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Abstract

The US Air Force recently fielded the F-16 Automatic Ground Collision Avoidance

System (Auto GCAS). This system meets the operational requirements of being both

aggressive and timely, meaning that extremely agile avoidance maneuvers will be

executed at the last second to avoid the ground. This small window of automatic op-

eration maneuvering in close proximity to the ground makes the problem challenging.

There currently exists no similar Auto GCAS for manned military ‘heavy’ aircraft

with lower climb performance such as transport, tanker, or bomber aircraft. The

F-16 Auto GCAS recovery is a single pre-planned roll to wings-level and 5-g pull-up

which is very effective for fighters due to their high g and climb performance, but it is

not suitable for military heavy aircraft. This research proposes a new optimal control

approach to the ground collision avoidance problem for heavy aircraft by mapping the

aggressive and timely requirements of the automatic recovery to the optimal control

formulation which includes lateral maneuvers around terrain. This novel mapping

creates two ways to pose the optimal control problem for Auto GCAS; one as a Max

Distance with a Timely Trigger formulation and the other as a Min Control with an

Aggressive Trigger formulation. Further, the optimal path and optimal control ad-

mitted by these two formulations are demonstrated to be equivalent at the point the

automatic recovery is initiated for the simplified 2-D case. The Min Control formu-

lation was demonstrated to have faster computational speed and was chosen for the

3-D case. Results are presented for representative heavy aircraft scenarios against

3-D digital terrain. The Min Control formulation was then compared to a Multi-

Trajectory Auto GCAS with five pre-planned maneuvers. Metrics were developed to

quantify the improvement from using an optimal approach versus the pre-planned

iv



maneuvers. The proposed optimal Min Control method was demonstrated to require

less control or trigger later for the same scenario, which leads to a system which sat-

isfies the aggressive and timely operational requirements. The results of this research

provide a basis to evaluate the expected performance of any future Auto GCAS for

all aircraft.
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OPTIMAL RECOVERY TRAJECTORIES FOR AUTOMATIC GROUND

COLLISION AVOIDANCE SYSTEMS (AUTO GCAS)

I. Introduction

1.1 Motivation

For the last three decades, the United States Air Force (USAF), National Aero-

nautics and Space Administration (NASA), and Lockheed Martin have been work-

ing together as a team on an Automatic Ground Collision Avoidance System (Auto

GCAS) to reduce Controlled Flight Into Terrain (CFIT) mishaps, the #1 cause of

fighter pilot fatalities in the USAF. According to the Federal Aviation Administra-

tion (FAA), “A CFIT accident occurs when an airworthy aircraft, under the control

of a pilot, is flown into terrain (water or obstacles) with inadequate awareness on

the part of the pilot of the impending disaster” [33]. Not every aviation organization

defines CFIT the same way however, and therefore may, or may not, include pre-

ventable mishaps resulting from physiological incidents such as spatial disorientation,

hypoxia, and/or g-induced Loss of Consciousness (g-LOC). Unlike manual warning

systems, Auto GCAS can prevent mishaps even if the pilot is incapacitated and for

that reason, the Auto GCAS team created its own mishap category called “Auto

GCAS-Preventable.” An Auto GCAS-preventable mishap is defined as a mishap

where a fully functioning aircraft, with the gear up, impacts the ground due to pilot

spatial disorientation, loss of situational awareness, target fixation, or physiological

incapacity such as g-LOC or hypoxia [98]. Initial Development Auto GCAS testing

started in 1984 with Follow-on Development testing from 1991-1993. Further, a Joint
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US-Sweden Auto GCAS flight test program was accomplished from January 1997 to

November 1998 on the Advanced Fighter Technology Integration (AFTI) F-16 at Ed-

wards Air Force Base (AFB) CA. The Joint AFTI Auto GCAS program successfully

defined the 80% solution of ground collision protection for fighter/attack aircraft.

Some additional work remained but there was no additional funding to accomplish

more flight test.

On 19 May 2003, the Secretary of Defense (SecDef) Donald Rumsfeld published

a memorandum titled “Reducing Preventable Accidents” which mandated a 50%

reduction in the number of mishaps and accident rates across the Department of De-

fense (DoD) [79, 87]. There were two major actions leading to this SecDef memo.

First, Secretary Rumsfeld was interested in implementing a safety campaign to re-

duce workplace injury rate just as then Treasury Secretary Paul O’Neill had done

while President and Chief Executive Officer at Alcoa from 1987 to 2000 and at the

Department of Treasury from 2001 to 2002 [6]. The second event was the publishing

of the Congressional Research Service (CRS) study “Military Aviation Safety” by

Christopher Bolkcom dated September 16, 2002 [6]. Bolkcom’s CRS study described

an increase in Air Force aviation accident rates (Class A mishap rate of 1.76 accidents

per 100,000 flight hours) after years of decline [13].

In his 2003 SecDef memorandum, Secretary Rumsfeld appointed Dr. Chu, the

Undersecretary of Defense for Personnel and Readiness USD(P&R), to lead the effort

to reduce DoD mishaps by 50% [24, 79]. Dr. Chu created the Defense Safety Oversight

Council (DSOC) to manage the DoD-wide implementation [24]. This safety mandate

was later increased to a 75% reduction of DoD mishaps on 15 Mar 2004 by Deputy

Secretary of Defense Paul Wolfowitz in the Strategic Planning Guidance (classified

document) for fiscal years (FY) 2006-2011 [6] and later endorsed by Secretary of

Defense Robert Gates in his 30 May 2007 memorandum titled “Zero Preventable
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Accidents” [36]. This set the goal year to be FY 2008 which was later extended to

FY 2012 in the Guidance for the Development of the Force FY 2010-2015 [6].

In 2006 across the USAF, CFIT mishaps were the #1 cause of fighter pilot fatalities

and the #2 cause of fighter mishaps [97]. From 2000 to 2013, the DoD fighter losses

that were from Auto GCAS-preventable mishaps totaled 23 pilots and 29 aircraft for

the F-16, F/A-18, and F-22 (see Table 1) [98]. Note that there were other DoD fighter

accidents that occurred during this timeframe; however, this table only includes the

fighters that were Auto GCAS compatible at the time (equipped with digital flight

controls) [98].

Table 1. Auto GCAS-Preventable Pilot and Fighter Losses from 2000 to 2013 [98]

Aircraft Type # Pilots Lost # Aircraft Lost

F-16 14 17
F/A-18 7 10

F-22 2 2

One of the task forces established by the DSOC was the Aviation Safety Improve-

ments Task Force (ASI TF) which was given the charter to reduce aviation mishaps

across the DoD [24]. “The Safety Technology Working Group (STWG) was the ASI

TF working group charged with identifying technological mitigation strategies for

aviation mishap reduction” [24, 87]. The STWG published a report in February 2006

titled Fighter/Attack Automatic Collision Avoidance Systems Business Case which

included a cost-benefit analysis for automatic ground collision avoidance systems.

Table 2 shows a breakdown of the estimated savings from implementing Auto GCAS

across some fighter/attack platforms in the DoD, which were calculated by applying

the historical CFIT rate to the estimated remaining service life for each weapon sys-

tem [24]. If Auto GCAS were to be implemented in these platforms, the totals would

be 65 pilots and 100 aircraft saved ($4.8B in aircraft assets) [24]. “[This] thorough

business case analysis showed that billions of dollars worth of aircraft could be saved
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with a program costing less than a single new aircraft” [17]. Note that the data in the

business case was based on the Combat Air Forces (CAF) in 2006, with the predicted

service life of F-16s through 2025 and of F-22s and Air Force variant F-35As through

2035 [24]. The F/A-18 estimates are from 2008 to 2032 [24].

Table 2. DoD Estimated Pilots and Aircraft Saved due to Automatic Collision Avoid-
ance Systems from 2008 to 2035 (data from [24])

Aircraft Type # Pilots Saved # Aircraft Saved Aircraft Cost Savings

F-161 11 17 $615M
F/A-182 6 8 $665M

F-223 5 7 $863M
F-35A3 43 68 $2.7B

1F-16 estimates are from 2011 to 2025 (predicted end of service life).
2F/A-18 estimates are from 2008 to 2032.
3F-22 and F-35A estimates are from 2011 to 2035.

All of the data in Table 2 was taken directly from the DSOC STWG’s Fighter/At-

tack Automatic Collision Avoidance Systems Business Case from February 2006. The

STWG calculated F-16 estimated future mishap rates based on F-16 historical mishap

rates, estimated service life of current F-16s (in 2006) and their historical utilization

hours [24]. The F-22 estimated mishap rates were calculated by using a blend of F-15

(80%) and F-16 (20%) historical mishap rates, while the Air Force variant F-35A

estimated mishap rates were calculated by using a blend of F-16 (90%) and combined

A-7 and A-10 (10%) historical mishap rates [24].

Historically, CFIT mitigation efforts have consisted of advanced training, increased

pilot experience, and pilot activated (i.e. manual) safety systems such as the F-16 Pre-

dictive Ground Collision Avoidance System (PGCAS) in the 1990s and the F/A-18

Terrain Awareness Warning System (TAWS) in the early 2000s [24]. According to

the DSOC in 2006, “Training has had some success in reducing CFIT and MIDAIR

rates in the past, but reductions in the rates have long been stagnant and no large im-

provements from training are envisioned for the future” [24]. Despite these mitigation
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efforts, the DoD fighter CFIT rate has not shown a statistically significant change

in 40 years [24]. According to Swihart et al., “both the Navy TAWS and the AF’s

PGCAS are manual systems requiring the pilot to maneuver the aircraft to avoid the

collision. These systems may have had some success in reducing CFIT mishaps, but

the magnitude of their improvement is not enough to achieve statistical significance.

The human being is now the limiting factor because he or she cannot always recognize

a warning or respond appropriately to prevent a mishap” [87]. Because the human is

now the limiting factor, the DSOC has concluded that the comprehensive 75% reduc-

tion in fighter mishaps cannot be achieved without the widespread implementation

of an automatic system such as Auto GCAS [24]. Therefore, in 2007, with DSOC

support, the Air Force Research Laboratory (AFRL) initiated the Automatic Colli-

sion Avoidance Technology/Fighter Risk Reduction Program (ACAT/FRRP). The

ACAT/FRRP effort ultimately cost approximately $26M. The goal of ACAT/FRRP

was to perform Auto GCAS risk reduction and enable a faster technology transition

to DoD fighter platforms, specifically the F-16 Blocks 40/50, F-22, and F-35.

The conclusions of ACAT/FRRP testing were that Auto GCAS provided excel-

lent mishap prevention and nuisance4-free operation. Testing was completed on the

production Auto GCAS algorithm in March 2013 at the 416th Flight Test Squadron

at Edwards AFB CA as part of the Operational Flight Program (OFP) M6.2+ and

was fielded on all operational F-16 Block 40 and 50 aircraft by Dec 2014.

The F-16 Auto GCAS automatic recovery maneuver is a roll to wings-level and

5-g pull-up (until terrain is cleared) which is extremely effective in saving the life

of a pilot with g-LOC or spatial disorientation. However, it is a single pre-planned

maneuver regardless of the flight conditions or terrain. Variations in available load

factor from 5 g down to 2 g are taken into account by the system to provide protection

4A nuisance warning is defined as an undesired/early activation of Auto GCAS that could impede
mission operations.
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at low speeds. A roll to wings-level and pull-up is very effective for fighters due to

their high performance capability which allows going over obstacles with relative ease.

For other aircraft, alternative maneuvers may be more effective.

The Auto GCAS algorithm, as well as manual ground collision avoidance algo-

rithms, focuses on when to execute the pre-planned recovery maneuver and not what

the optimal recovery maneuver should be. If Auto GCAS technology were to be

applied to other aircraft such as cargo, transport, or general aviation aircraft, go-

ing over a high terrain obstacle may not be viable depending on the aircraft’s climb

performance, or it would require the aircraft to start climbing miles out in order to

go over the high obstacle, when a lateral escape5 maneuver to go around the obsta-

cle could be more easily accomplished. An optimal lateral recovery maneuver may

also increase mission effectiveness. For example, a lateral escape maneuver that goes

around a mountain obstacle instead of over it could allow the aircraft to get closer

to the obstacle before turning in order to continue on a mission-critical low-level

reconnaissance route.

The goal of this research is to formulate optimal6 ground collision avoidance ma-

neuvers which include lateral escapes and then apply that technique to aircraft with

lower climb performance such as tanker, transport, and bomber aircraft. An opti-

mal solution may require more computational resources onboard than a pre-planned

solution to determine solutions. A natural question then may be to ask if real-time im-

plementation of an optimal control solution onboard an aircraft for automatic ground

collision avoidance is feasible. The idea of implementing real-time optimal control

(RTOC) is not new. Advances are being made in available computing power as

well as robust optimal control solution techniques. “Efficient pseudospectral methods

5The term escape refers to any trajectory from a set of safe path trajectories that avoid terrain.
6Any trajectory produced by the solution of an optimal control problem will be loosely referred

to as an ‘optimal’ trajectory.
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have made real-time solutions of the optimal control problem not only possible, but

a topic of great interest” [78]. In recent years, the advent of tools such as SOCS [10],

DIDO [77], and General-Purpose Pseudospectral Optimal Control Software [74] (here-

after referred to as GPOPS-II) makes it possible for real-time implementation and

allows for evaluation of “best possible” maneuvers. Ongoing research in that area

shows that it is possible for certain scenarios. Two recent examples of RTOC pro-

grams that have been demonstrated in flight test are the Air Force Institute of Tech-

nology (AFIT)’s quadrotor in 2011 [78] and NASA’s Small Unmanned Aerial Vehicle

(UAV) in 2013 [83]. The AFIT quadrotor research in 2011 solved a bearing-only tra-

jectory planning problem, autonomously landing a quadrotor on a wire [78]. NASA’s

Small UAV Auto GCAS control algorithm consisted of three pre-planned escape ma-

neuvers and an algorithm that chose the best one based on predicted intersections

with digital terrain [83]. Small UAV Auto GCAS not only demonstrated RTOC by

choosing the best of three escape maneuvers to avoid the ground but also hosted the

entire Auto GCAS algorithm and digital map of the US on a smart phone onboard

the UAV, demonstrating that even with the current limiting factors of throughput

and capacity that there is enough throughput and capacity in existing systems to

perform some types of RTOC [83].

For an autonomous collision avoidance solution to be acceptable to the pilot com-

munity, the system must operate only after an aware pilot would recover the air-

craft [88]. Even if the Auto GCAS prevented a ground collision, it would be consid-

ered an impedance to mission performance if at the time of actuation, an aware pilot

still had time to recover with another trajectory [88]. In such cases, the pilot may

consider this early activation a nuisance and decide to simply turn the system off [88].

Therefore, before developing new algorithms it is important to understand the current

Auto GCAS Design Criteria, which communicate the Auto GCAS philosophy. The
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Design Criteria (in order of priority) are [88]:

1. Do No Harm

2. Do Not Interfere

3. Avoid Ground Collisions

The top priority, “Do No Harm,” means that Auto GCAS was designed to en-

sure that the aircraft would not be auto-recovered into terrain. In other words, only

maneuver the aircraft if there is high certainty that the maneuver will not make the

situation worse. This is ensured through Integrity Management. “Do Not Interfere”

means do not impede the pilot from performing mission operations which is accom-

plished by eliminating nuisance warnings (as previously defined). Nuisance warnings

are eliminated by starting an avoidance maneuver after the time an aware pilot would

have recovered. “Avoid Ground Collisions” is defined as automatically preventing col-

lisions with the ground. Avoiding ground collisions is achieved by projecting the fu-

ture aircraft avoidance trajectory onto digital terrain, and if the trajectory intersects

the terrain plus a safety buffer, initiating the maneuver at the last moment.

Note that while it might seem like the primary design criteria should be Avoid

Ground Collisions, it is third. Why? This is due to the fact that preventing ground

collisions cannot be successfully accomplished unless there is high certainty that the

maneuver makes the situation better and the algorithm is nuisance free so that the

pilot can perform the mission. Thus, there are two potentially competing objectives

when it comes to Auto GCAS performance; preventing ground collisions while not

impeding normal operations (nuisance potential). In other words, the Avoid Ground

Collisions and Do Not Interfere design criteria are interconnected, and the relationship

is very important. The threshold between the two is when the automatic recovery will

be initiated. “It can also be reasoned that the dividing line between a valid warning

and a nuisance warning is the point where an aware pilot feels an aggressive recovery
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must be initiated to avoid collision” [87]. Through detailed flight test and analysis at

Edwards AFB CA from January to October 1997, this threshold has been determined

to be 1.5 seconds (sec) of ‘Time Available’ for an F-16. A Time Available of zero sec

is defined as the point in time after which the pre-planned recovery maneuver will no

longer provide a safe path away from terrain. If the automatic recovery was allowed

to initiate earlier than 1.5 sec Time Available, the early recovery could be perceived

by the F-16 pilot as a nuisance and impede mission performance.

The 1.5 sec threshold was determined through flight test as follows. For the

purpose of Auto GCAS testing, the F-16 was equipped with a flight test aid system

called Pilot Activated Recovery System (PARS) [7]. PARS was designed for the

situation where a pilot realizes he is disoriented. PARS can be initiated by the pilot

at any time and it automatically returns the aircraft to straight and level flight with

a slight nose-high climb [7]. For nose-low conditions, the PARS recovery is identical

to the Auto GCAS recovery of an automatic roll to wings-level and pull to 5 gs [88].

However, it should be noted that PARS has no knowledge of terrain, and therefore

cannot be used in place of Auto GCAS [89].

For the 1997 nuisance criteria flight testing, PARS recoveries were used for re-

peatability and consistency across all pilots [88]. The PARS recoveries were initiated

by several test pilots at the altitude where they felt comfortable recovering. The

buildup approach used was to test at progressively lower altitudes as long as the pilot

felt comfortable with the recovery from the previous buildup run at the same initial

conditions[84]. After each PARS recovery, the test pilot gave an anxiety rating as

described in Figure 1. As shown in Figure 1, the dividing line between a nuisance

recovery and an acceptable recovery to prevent ground collision was determined to

be 1.5 sec of Time Available [87]. Hence 1.5 sec became the Design Criteria Limit.

The F-16 Auto GCAS recovery was designed to be commanded only after the 1.5 sec
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nuisance boundary is crossed [87].

Figure 1. Time Available Design Criteria from Jan-Oct 1997 Flight Test [87].

Using this nuisance criteria, flight tests have proven Auto GCAS to be very effec-

tive and acceptable to F-16 pilots. Although this criteria was developed for fighters,

the same approach could be applied when extending this to other platforms, including

military heavy aircraft. At present the Design Criteria Limit (nuisance boundary) is

not known for any military heavy aircraft. If Auto GCAS is to be integrated into a

heavy aircraft, a similar series of flight tests must be done to determine the nuisance

boundary for that specific aircraft. The fact that the automatic recovery must be

implemented after the nuisance boundary and while close to the ground makes the

Auto GCAS problem challenging.
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1.2 Heavy Auto GCAS

Auto GCAS has been developed and tested on the F-16, but no similar automatic

system has been developed for military heavy aircraft such as transport, tanker, or

bomber aircraft. Two of the reasons are the fact that heavy aircraft have at least two

pilots onboard and that there currently is not a business case for a heavy Auto GCAS.

One reason that an automatic approach to ground collision avoidance has yet to be

fielded on crew aircraft is the philosophy that although one pilot may be unaware of

the impending collision and incapable of performing a recovery maneuver, the other

pilot should be aware and able to recover. This mutual support aspect of flying does

in fact limit the instances of CFIT, but it by no means eliminates it. Further, because

heavy aircraft do not fly at a high g loadings, g-LOC is not an issue as it is for fighter

aircraft, thus, eliminating one of the major causes of fighter CFITs. However, despite

two pilots being onboard, ground collisions with fatalities still occur in crew aircraft,

typically in high task saturation environments.

The second reason stems from the lack of a business case for heavy Auto GCAS.

With fighters, much of the research and testing of F-16 Auto GCAS had been ac-

complished before the business case was written. One of the catalysts for finally

obtaining an operational requirement and funding for the final testing and fielding

of Auto GCAS for fighters was the Fighter/Attack Automatic Collision Avoidance

Systems Business Case published in 2006 by the DSOC STWG [24]. In a similar

way, a business case for a heavy Auto GCAS is necessary to justify an operational

requirement and funding to enable eventual fielding of the system on candidate air-

craft. Until then, research should still be conducted to further the development of the

technology. Military heavy aircraft continue to operate both tactically and in training

at low-level altitudes, therefore the potential for ground collision mishaps still exists.

The goal for this research is to determine efficient and effective Auto GCAS meth-
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ods for heavy aircraft so that the foundation of the system is in place when the need

or business case arises. Ultimately, Auto GCAS increases safety, mitigates risk, and

protects aircrew and assets. For these reasons, it is a logical and necessary approach

for long-term aviation safety needs. This research seeks to show the technology exists

to implement a heavy Auto GCAS so that future mishaps can be prevented.

1.3 Research Objectives

The F-16 Auto GCAS algorithm can command the flight control system to execute

a single recovery maneuver, a roll-to-wings-level and 5-g7 pull-up until terrain is

cleared. When a high performance jet flies over smooth terrain, a wings-level pull-

up is the best recovery and is acceptable over rough terrain as well. However, for

aircraft with lower climb performance that fly slow in rough terrain, a lateral escape

maneuver is preferred in many cases. A versatile Auto GCAS should include one or

more lateral escape options and is the focus of this research.

The primary research objective is to synthesize optimal control with Auto GCAS

for lower climb performance aircraft, determining optimal recovery trajectories. As

defined previously, an optimal trajectory is any trajectory produced by the solution

of an optimal control problem. In finding the optimal recovery trajectories, the goal

of this research is also to identify appropriate applications to different military heavy

platforms. With these goals in mind, the specific research objectives are:

1. Optimal Recovery Trajectory for Aircraft with Lower Climb Performance

Develop and evaluate an optimal control technique to calculate an Auto GCAS
recovery trajectory (to include lateral avoidance maneuvers) for aircraft with
lower climb performance. Candidate aircraft considered are low, medium, and
high-speed military heavy aircraft.

7During slower speed operations, the F-16 Auto GCAS algorithm will provide protection down
to 2 gs available [89].
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2. Comparison of Optimal Auto GCAS to a Pre-Planned Trajectory Algorithm

Conduct a limited comparison of the Optimal Auto GCAS algorithm and an
algorithm with pre-planned trajectories. For this objective, the Optimal Auto
GCAS will be compared to the Multi-Trajectory Auto GCAS algorithm with
five pre-planned automatic recovery maneuvers [91].

The Multi-Trajectory Auto GCAS is follow-on research that is currently being

conducted by Trombetta at AFIT, but is not yet published [91]. Comparison between

the simulated Multi-Trajectory Auto GCAS and the Optimal Auto GCAS will be done

as part of this research.

If successful, the results of the research herein will provide a validated approach

for an Optimal Auto GCAS that can be applied to a variety of platforms for both

simulation and flight test purposes. Further, metrics will be created that allow com-

parison between optimal recovery trajectories and pre-planned recovery trajectories

for Auto GCAS design and analysis purposes.

1.4 Assumptions and Limitations

The optimal control technique developed for this research is limited to a three-

degrees of freedom (3-DOF) simplified point mass aircraft model. Appropriate limits

on the states and controls of this model allow the model to have performance charac-

teristics similar to low, medium, and high-speed military heavy aircraft. However, the

aircraft model does not account for the onset rate of controls, bur rather assumes that

instantaneous control is possible. The model also assumes coordinated turns. Con-

stant aircraft velocity is assumed based on the fact that the Auto GCAS activation

duration is relatively short (less than 10 seconds).

For this research, Digital Terrain Elevation Data (DTED) Level 1 which has ap-

proximately 90 meter (m) post8 spacing is used. In some cases, research has shown

8A post is an x, y, z data point representing longitude, latitude, and elevation.
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that compressing the digital terrain data (i.e. thinning out the posts) is desirable [83].

The assumption is that the method developed for this research will work whether the

digital terrain data used is compressed or not. All scenarios for this research were

run against the digital terrain for one mountain on the Edwards AFB range; the

assumption is that this terrain is representative of mountainous terrain.

If successful, the algorithms developed in this research will require real-time im-

plementation. Proving the feasibility of real-time implementation is not a goal of this

research, however, necessary steps were taken to make the method as computationally

efficient as possible.

1.5 Document Outline

Chapter II provides necessary background on collision avoidance and optimal con-

trol. First a literature review of existing methods used for collision avoidance is

presented followed by a review of manual and automatic ground collision avoidance

systems that have been implemented on aircraft. Next, the relevant theory in re-

gards to the optimal control problem formulation is covered to include appropriate

cost functionals. The optimal control approach to Auto GCAS and the proposed

experimental approach are then presented in Chapter III, followed by a 2-D exam-

ple. Chapter IV presents how to formulate the path constraint and cost functional

of the 3-D optimal control formulation for Auto GCAS, and Chapter V presents the

full methodology for the 3-D optimal control formulation along with results for a

low-speed heavy aircraft. Conclusions and future work are discussed in Chapter VI.

The appendices provide additional details to complement the material in the main

body. Appendix A presents how to build the DTED matrices and the mappings be-

tween reference frames, Appendix B describes the methodology to interpolate terrain

heights, Appendix C provides the methodology for applying Trombetta’s Path Prop-

14



agation Criteria [91], and Appendix D includes the settings for the GPOPS-II and

nonlinear programming (NLP) solver IPOPT software used in this research.
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II. Literature Review

This chapter begins with a survey of existing methods used for both air and

ground collision avoidance. Next a literature review of both manual and automatic

ground collision avoidance systems (to include both proposed and in-service systems)

is presented, followed by the presentation of the general formulation of the optimal

control problem. Finally, an overview of the solution technique via direct orthogonal

collocation, the aircraft model, and the digital terrain model used for this research

are explained.

2.1 Air and Ground Collision Avoidance Modeling Methods

The preponderance of the literature on aircraft collision avoidance deals with air

collision avoidance. Since many of the techniques for avoiding other aircraft can

be applicable to avoiding terrain, a review of air collision modeling techniques is

presented here alongside that of ground collision modeling techniques.

One methodology that includes aspects of both is that of conflict detection and

resolution (CDR). An influential framework categorizing CDR methods and models

was created by Kuchar and Yang [54, 55], who reviewed 68 CDR modeling methods

for air and ground collision avoidance as well as for naval applications between 1997

and 2000. “A conflict is an event in which two or more aircraft experience a loss

of minimum separation” and thus could be on a collision course [55] or in which an

aircraft’s future path is predicted to hit the ground. As defined by Kuchar and Yang,

“The goal for the CDR system is to predict that a conflict is going to occur in the

future, communicate the detected conflict to a human operator and, in some cases,

assist in the resolution of the conflict situation” [55].

For air collision avoidance scenarios, the human operator could be the pilot, remote
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pilot, or an air traffic controller. Since the majority of the air collision scenarios are

strategic deconflictions such that the collision is averted miles out, predicting that a

conflict will occur and communicating the detected conflict to these human operators

early is vital. None of the systems that Kuchar and Yang reviewed had automatic

recoveries to resolve the conflict situation, but rather had either manual resolution

cues for techniques that can be implemented by a human operator or only warnings

with no resolution cues at all.

For the research herein, the human operator is the pilot. Predicting that a conflict

is going to occur and resolving the conflict with an automatic recovery are paramount.

Although very important for manual ground collision avoidance systems, communi-

cating the detected conflict to the pilot is not as important for automatic systems

which assume that the pilot is unaware and unable to avoid the impending disaster.

For a manual system, an example is Predictive GCAS (PGCAS) on the F-16, com-

municating a terrain conflict is absolutely essential since PGCAS provides an early

warning that assumes an aware pilot.

Kuchar and Yang categorized the CDR methods by surveying 68 different algo-

rithms (63 of which were for air collision avoidance). From this, they developed a

taxonomy that includes 1) dimensions of state information, 2) method of dynamic

state propagation, 3) conflict detection threshold, 4) conflict resolution method, 5)

maneuvering dimensions, and 6) management of multiple aircraft conflicts [55]. The

sixth characteristic, management of multiple aircraft, addresses air-to-air conflicts

and is not directly applicable to a stand-alone ground collision avoidance system.

Therefore, only the first five characteristics of Kuchar and Yang’s taxonomy are ap-

plicable to ground collision avoidance and are discussed here. The majority (63 out

of 68) of the methods they reviewed dealt with air collision avoidance, however some

of the solution techniques can also be applied to ground collision avoidance. Three
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of the models reviewed by Kuchar and Yang were developed for maritime collision

avoidance [22, 50, 90, 54]. Two of the 68 systems specifically address the problem

of ground collision, namely Ground Proximity Warning System (GPWS) and En-

hanced GPWS (EGPWS). Therefore, the CDR attributes of GPWS and EGPWS are

examined at the end of each the following five sections.

2.1.1 Dimensions of State Information.

The dimensions of state9 information refer to whether the states measured by the

algorithm include miss distances (closest approach distances) purely in the vertical

plane, purely in the horizonal plane, or as three-dimensional (3-D) data [55]. Out of

the 68 systems reviewed by Kuchar and Yang, only the GPWS algorithm measures

state information purely in the vertical plane and therefore its state information

includes altitude as well as climb (or descent) rate. Of the remaining 67 systems,

28 algorithms use states with dimensions only in the horizontal plane and 39 use 3-

dimensional states. The EGPWS algorithm utilizes 3-D state information [55]. While

it is clear for ground collision avoidance that as a minimum vertical state information

must be used in the model, 3-D state information should be used for an automatic

ground collision avoidance system such that not only terrain below the aircraft but

also terrain in front of the aircraft can be avoided.

2.1.2 Method of Dynamic State Propagation.

In order to determine the future trajectory’s point of closest approach to the

terrain, propagated states and propagated controls are needed. Once propagated,

the trajectory can be compared to the terrain and a point of closest approach is

9In general, state refers to the aircraft position vector as well as the aircraft velocity vector, but
can also include aircraft information such as bank angle and heading angle. If the model includes
only the horizontal plane, the aircraft position and velocity vectors will be two dimensional in the x
and y axes and for the models that incorporate the horizontal and vertical planes, the position and
velocity vectors will be three dimensional in the x, y, and z axes [54].
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calculated to determine if a collision will occur. The three fundamental methods to

propagate the aircraft dynamics forward can be characterized as nominal, worst-case,

and probabilistic [55]. For the nominal method, the algorithm takes whatever the

current state of the aircraft is and propagates that forward over time. In essence,

it is assuming no change in pilot inputs. “An example would be extrapolating the

aircraft’s position based on its current velocity vector,” [55] as shown in Figure 2 (a).

Figure 2. State Propagation Methods [54, 55]

In contrast, the worst-case method answers the question, “What is the most ex-

treme (worst possible) maneuver the aircraft could perform based on its current

state?” The benefit to including worst-case propagations is that they map out all

possible trajectories the aircraft could fly as shown in Figure 2 (b) which can help

predict all possible ‘conflicts’ that could arise [55].

Between the nominal and worst-case methods lies the probabilistic method as

shown in Figure 2 (c). Note that “the probabilistic method is also the most general;

the nominal and worst-case methods are subsets of probabilistic trajectories” [55].

Both the GPWS and EGPWS algorithms use the nominal method to propagate the

aircraft dynamics forward [54, 55].
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2.1.3 Conflict Detection Threshold.

The 68 algorithms were surveyed to see if conflict detection thresholds were used

to determine when alerts are issued. Kuchar and Yang found that 19 of the algorithms

do not have an explicit conflict detection threshold of some type while 47 algorithms

do include explicit conflict detection thresholds [55]. These thresholds are metrics

created from state information that are necessary to make decisions [54] and/or to

trigger a resolution method. Some examples of conflict detection thresholds which the

research herein will also consider are current range to the point of closest approach

(to terrain or to other aircraft) as well as time to point of closest approach, miss

distance if no escape trajectory is implemented, maneuvering cost, and probability

of conflict [54]. Both GPWS and EGPWS have explicit conflict detection thresholds.

GPWS uses τ , predicted time to closest point of approach, and r, range as thresh-

olds [54], while EGPWS uses caution and warning ribbons as thresholds. Figure 3

depicts the EGPWS caution ribbon in yellow and the warning ribbon in red [43].

Figure 3. EGPWS Caution and Warning Ribbons [43]

“These ribbons project down, forward, then up from the aircraft with a width starting

at 1/4 NM and extending out at ±3◦ laterally, more if turning. The look-down

20



and up angles are a function of the aircraft flight path angle, and the look-down

distance a function of the aircraft’s altitude with respect to the nearest or destination

runway. This relationship prevents undesired alerts when taking off or landing. The

look-ahead distance is a function of the aircraft’s speed, and distance to the nearest

runway” [43]. If either terrain or an obstacle intersect with these ribbons, then the

appropriate caution or warning alerts and messages are generated. These EGPWS

alerts and messages are provided at the end of Section 2.1.4. GPWS and EGPWS

functions are discussed further in Section 2.2.4.

2.1.4 Conflict Resolution Method.

Kuchar and Yang describe five methods used for resolving conflicts which include

1) prescribed, 2) optimized, 3) force field, 4) manual, and 5) no method [55]. These

five methods are briefly described in the following paragraphs.

“Prescribed resolution maneuvers are fixed during system design based on a set

of predefined procedures. For example, GPWS issues a standard ‘PULL UP’ warning

when a conflict with terrain exists. GPWS does not perform additional computation

to determine an optimal escape maneuver” [55]. GPWS depends on an aware pilot to

respond to the aural warning and to pull up to perform a manual escape maneuver.

The second conflict resolution method is an optimized approach which uses aircraft

dynamics, path constraints and a cost functional specific to the problem. The solution

to the problem is an optimal control input (that in this research is commanded by

the autopilot) that minimizes the cost functional while at the same time satisfies the

dynamic constraints (aircraft equations of motion) and path constraints.

Thirdly, a force field type of approach can be used. Force field approaches “treat

each aircraft as a charged particle...[and] the repulsive forces between aircraft are used

to define the maneuver each performs to avoid a collision” [55]. Artificial potential
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functions (APFs), although not synonymous with force field approaches, are similar

and can also be used for collision avoidance. The Air Force Institute of Technology

(AFIT) has performed some research on adapting APFs to aircraft ground and air

collision avoidance methods [1, 34, 85]. In AFIT’s APF approach, all components

of the problem are treated as potential fields, where obstacles (terrain or intruder

aircraft) are modeled as sources indicating something to be avoided and goals are

modeled as sinks indicating a waypoint, target, runway, or other goal to be achieved.

It is worthwhile to note that APFs and optimal control solutions demonstrate two

extremes of real-time approaches that are both within the feasible solution space [1].

Using the APF methodology to model the terrain obstacles as sources and the goals

as sinks guarantees the aircraft will not hit the terrain at a relatively low computa-

tional cost [1]. Once an APF is chosen to model the obstacle space, the aircraft is

commanded to follow the contours of that function by incorporating a simple feed-

back control based on the negative of the gradient of the APF. However, the APF

solution is sub-optimal and therefore the control effort required will be higher than

the optimal control solution which minimized control. On the other extreme, using

an optimal control approach guarantees that a minimum control effort solution is

found (assuming global convergence) because of the cost functional being minimized.

However, the aircraft may be arbitrarily close to the constraint boundaries and the

ability to compute an optimal solution at the desired 10-12 Hz rate may result in a

high computational burden.

The fourth conflict resolution method is a manual method. A manual conflict res-

olution technique allows “the user to generate potential conflict resolution solutions

and obtain feedback as to whether the trial solution is acceptable” [55]. The advan-

tage provided by a manual solution is that the human operator (air traffic controller

or pilot) can take into account other information, such as weather, that the CDR
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algorithm can not ‘see’ [55].

Finally, a system can have no method of conflict resolution. Having no resolution

method simply means that while the algorithm can compute conflict detection, it is

not designed to calculate an avoidance action [55]. For example, EGPWS provides

cautions and warnings to the pilot but does not provide the pilot with an avoidance

maneuver.

The GPWS conflict resolution method is further described here. According to

the 1995 Industry/International Civil Aviation Organization (ICAO) CFIT Task

Force [49], the prescribed GPWS warning escape maneuver recommended is:

1. React immediately to a GPWS warning.

2. Positively apply maximum thrust and rotate to the appropriate pitch attitude
for your airplane.

3. Pull up with wings level to ensure maximum airplane performance.

4. Always respect the stick shaker.

In the earliest versions of GPWS, the available time between initial warning and

aircraft impact was as little as five seconds. According to the Industry/ICAO CFIT

Task Force, “Incidents and accidents have occurred because flight crews have failed

to make timely and correct responses to the GPWS warnings. The available time

has increased between initial warning and airplane impact since the first version of

the GPWS; however, this time should not be used to analyze the situation. React

immediately.” [49]. Today’s GPWS and EGPWS systems provide up to 60 seconds

of time from the warning to airplane impact [43]. For EGPWS, the caution alert is

typically provided 60 seconds ahead of the terrain conflict (caution lights come on

in addition to the aural message “CAUTION TERRAIN, CAUTION TERRAIN”),

while the warning alert is typically provided 30 seconds ahead (warning lights come

on along with the aural warning “TERRAIN, TERRAIN PULL UP”) [43].
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2.1.5 Maneuvering Dimensions.

If a resolution maneuver (aka trajectory) is computed by the algorithm, it is im-

portant to classify those recovery maneuvers to provide a framework for comparison.

Kuchar and Yang catalog the maneuver dimensions by 1) lateral/turning maneuvers

only (Turn), 2) vertical maneuvers only (Vert), 3) speed change only (Sp), or 4) com-

bined maneuvers C(*), where * denotes the maneuver type [54, 55]. Sp/Turn would

indicate that either speed changes or turning maneuvers can be performed but not

both simultaneously [54, 55]. If an algorithm computes a combined climb and turn

maneuver, for example, the notation C(Turn/Vert) would be used to indicate that a

“simultaneous climbing or descending turn may be performed” [54, 55].

Table 3 lists a summary of the CDR approaches used for current operational

systems: including GPWS and EGPWS based on Kuchar and Yang’s 1997 and 2000

survey papers [54, 55] as well as the F-16 Auto GCAS method [87, 88].

Table 3. Conflict Detection and Resolution Approaches for Current Operational Sys-
tems (GPWS and EGPWS data from [54, 55])

Method State Propagation Detection Resolution Maneuver

Name Dimension Methods Thresholds Maneuver Dimensions

GPWS10 Vertical Nominal τ, r Prescribed Vert
EGPWS10 3-D Nominal Ribbons None N/A

F-16 AGCAS 3-D Worst-case11 d Prescribed C(Turn/Vert)
10GPWS and EGPWS data derived from [54] [55].
11Worst-case as defined by the physiological constraints on the pilot, not necessarily the limits

of the airframe.

The threshold τ in this context is defined as the predicted time to the closest point

of approach to the terrain, r is range and d is predicted miss distance [54].

In the current F-16 Auto GCAS approach which was fielded in the latter part

of 2014, a combined roll and pull maneuver is automatically commanded once the

predicted miss distance d in the propagated path (known as the Trajectory Prediction

Algorithm or TPA) is less than or equal to the threshold value. If the current roll angle
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of the aircraft is less than or equal to 90◦ (left or right), then the g-onset and the roll

start at the same time as a combined maneuver [7]. If the current roll angle is greater

than 90◦, the autopilot first rolls the aircraft towards wings-level, and then once the

aircraft rolls through 90◦ the autopilot starts to command the pull/g-onset [7].

By comparing the three approaches listed in Table 3, it can be seen that none

of these operational ground collision avoidance system use anything other than a

prescribed resolution maneuver or no resolution maneuver. After a review of the

literature, the optimal control method which provides the resolution maneuver devel-

oped in this research is explained in detail in Chapter III.

2.2 Current Ground Collision Avoidance Systems

The system of systems involved in ground collision avoidance includes 1) sensors,

2) terrain databases, 3) the ground collision avoidance algorithm, and 4) displays/an-

nunciators. In the F-16 for example, the Global Positioning System (GPS), and

Inertial Navigation System (INS) are sensors which provide aircraft state information

to the Auto GCAS recovery trajectory prediction algorithm which in turn produces a

predicted trajectory. The terrain map scanning algorithm converts the 3-D digital ter-

rain to a 2-D terrain profile, and the predicted trajectory is compared to this reduced

set of data pulled from the Digital Terrain Elevation Data (DTED) terrain database.

These processes are depicted in the Auto GCAS architecture in Figure 4 [87, 88]. If

the collision estimation algorithm calculates there is an intersection between the pre-

dicted trajectory and the 2-D terrain profile, the digital flight control system (DFLCS)

automatically recovers the aircraft with a last-second pre-planned trajectory. A loud

aural tone will sound and ‘break X’ symbology on the heads-up display (HUD) will

be projected indicating an auto recovery. A break X denotes two chevrons that come

in, one from each side of the HUD, as a warning. When the two chevrons touch and
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form an X, that is the signal that a recovery will be initiated immediately.

Figure 4. Auto GCAS Architecture [87, 88]

Annunciators are important for manual systems which are typically warning sys-

tems that assume an aware pilot. An automatic system operates as a last-second

emergency system and assumes the pilot is unaware. Therefore the annunciators

are not as important for automatic systems and are not discussed here. A review

of sensors, terrain databases, and both manual and automatic algorithms is given

here to provide proper context to the main focus of this research which is algorithm

development for determining optimal recovery trajectories.

2.2.1 Sensors.

In order to guarantee the pilot continuous protection from terrain, Auto GCAS

must be continuous and precise. For continuous protection, the F-16 Auto GCAS

algorithm computes (at 12 Hz) a predicted trajectory and then compares it to the

digital terrain. For precision location information, the F-16 Auto GCAS algorithm

utilizes GPS and INS information via the Embedded GPS/INS (EGI). If the EGI

information is degraded past acceptable tolerances, the System Wide Integrity Moni-
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toring (SWIM) system puts Auto GCAS in standby mode. EGI is the primary sensor

not only for Auto GCAS, but also for PGCAS and F/A-18 TAWS.

The F-16 is a combat fighter that was designed to minimize radar emissions that

could alert the enemy to its location. Hence care was taken in the design of the

Auto GCAS system to offer continuous protection and be precise but at the same

time not make the F-16 vulnerable to the enemy. Using an active sensor such as

radar to map the terrain would make the aircraft vulnerable to enemy detection. One

distinguishing characteristic of the F-16 Auto GCAS is that its primary sensors are

passive to ensure that the continuous protection requirement of Auto GCAS does

not create a vulnerability. This characteristic is in contrast to aircraft systems which

employ terrain following radar (TFR) that typically utilize a forward-looking radar

or light detection and ranging (LIDAR) with active emissions.

2.2.2 Terrain Databases.

Once the sensors calculate the position and velocity of the aircraft, the Auto GCAS

algorithm compares the aircraft location to its pre-loaded digital terrain database to

determine where the aircraft is in relation to terrain. Currently, there are multiple

choices for terrain databases which are generically known as Digital Elevation Models

(DEMs), Digital Terrain Data (DTD), or Digital Terrain Models (DTMs) [95]. This

research uses the term DEM defined as “any digital representation of the continuous

variation of relief over space” [19]. A typical DEM is a regular gridded matrix of

terrain elevation data, where the elevation z is measured in meters and represents the

terrain elevation at specific longitude, latitude points. DEMs can be built from many

raw data sources, for example geological surveys, quadrangle maps, and/or aerial sur-

veys like aerial radar interferometry. The three types of database formats important

to this research are Legacy Digital Terrain Elevation Data (DTED), Shuttle Radar
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Topography Mission (SRTM) DTED, and the National Elevation Dataset (NED).

2.2.2.1 Legacy DTED.

DTED (also known as Legacy DTED to distinguish it from the SRTM DTED) is a

3-D database format produced by the National Geospatial-Intelligence Agency (NGA)

and consists of latitude, longitude and terrain elevation data. Each lat/lon/elev

triplet is referred to as a ‘post’. Legacy DTED is available for most of the world from

approximately 84◦ North to 84◦ South latitude [95].

Legacy DTED is a collage of all sorts of different data sources taken across dif-

ferent time periods. The data was taken over decades, so it is possible that the best

source in one area of the country came from 1940 and in another area from 1970,

each with different accuracies. “Conventional topgraphic mapping technologies have

produced maps of uneven quality – some with astounding accuracy, some far less ade-

quate” [31]. When Legacy DTED was investigated for use with F-16 Auto GCAS and

National Aeronautics and Space Administration (NASA) Small UAV Auto GCAS, it

was found that it was not suitable for an Auto GCAS system because of its discon-

tinuities. According to the NASA Small UAV Auto GCAS technical report, “Legacy

DTED has been a common source for terrain data prior to SRTM. Although Legacy

DTED was a useful source in its time it has many issues with discontinuities across

longitude-latitude boundaries and localized artifacts that can results in vertical errors

of hundreds of feet (in some cases over a thousand feet of vertical error)” [83]. There

are several different levels of fidelity of the DTED data. DTED Level 0 has 30 arc

second (∼900 m) post spacing, DTED Level 1 has 3 arc second (∼90 m) post spacing,

DTED Level 2 has 1 arc second (∼30 m) post spacing, and DTED Level 3 has 1
3

arc

second (∼10 m) post spacing [62]. DTED Level 0 is available to the public through

the NGA website, and DTED Levels 1, 2, and 3 (regardless of geographic area of
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coverage) are considered Limited Distribution (LIMDIS) and only available to the

DoD [35, 63].

Many agencies had a need for a “globally consistent” and more accurate set of

digital terrain for scientific studies of plants, animals, and soil, geological studies,

recreational use, military use, and flight planning and navigation [62]. With the

advent of synthetic aperture radar (SAR) interferometry in the 1990s, collecting this

more accurate data efficiently from space was now possible [31]. The Space Shuttle

was chosen as the vehicle to carry two SARs (X-band and C-band) to capture this

high fidelity terrain data because it could access most of the world’s terrain and

capture the data in a short time period [31, 62].

2.2.2.2 Space Shuttle Radar Topography Mission DTED.

The DTED was updated through the Shuttle Radar Topography Mission (SRTM)

which flew from 11 to 22 February 2000 on Space Shuttle Endeavor during STS-99

and mapped 80% of the Earth’s surface (from 60◦ North to 56◦ South) [31, 62].

The northern coverage is higher due to the fact that the side-looking radars were

pointed toward the north side of the Space Shuttle [93]. The SRTM was a joint

venture between NASA and NGA. The SRTM DTED is pre-processed by NASA’s

Jet Propulsion Laboratory (JPL) and then forwarded to the NGA for final processing

and production [62]. The SRTM DTED horizontal datum is the WGS-84 reference

ellipsoid, and the vertical datum is the geoid (MSL) as determined by the WGS-84

EGM-96 geoid [64]. The advantage that SRTM DTED has is that it came from one

source, using one method and was done over a very short time period of 10 days (and

a total of 159 orbits) [31]. This leads to a more homogeneous SRTM DTED database

as opposed to Legacy DTED which is known to have discontinuities. “The rows at

the north and south edges as well as the columns at the east and west edges of each
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cell overlap and are identical to the edge rows and columns in the adjacent cell” [31].

It should be noted that Legacy DTED can have very high levels of accuracy in

some areas of the world, however there is no guarantee that this high accuracy exists

everywhere the aircraft needs to fly. Therefore, SRTM DTED was found to be better

suited for an Auto GCAS for military aircraft that fly worldwide [4, 83]. The original

version of SRTM DTED had some voids as well as spikes and wells [31] and was not

acceptable for use in Auto GCAS [7]. NGA was aware that “many applications require

a continuous DEM with no voids”, and developed methods to fill these voids [31]. An

updated version called void-filled SRTM DTED fixed these problems and is discussed

in Farr et al. [31].

One key difference between Legacy DTED and SRTM DTED is the fact that

Legacy DTED represents the bare-earth terrain elevation while SRTM DTED rep-

resents “first return” elevation; i.e. radar returns that can capture vegetation and

man-made buildings and towers [45]. In dense vegetation, the SRTM radars captured

the elevation of the tops of the canopies, while in less dense vegetation, the radars

may have captured partial canopy heights or may have been able to penetrate to the

bare earth [31]. Since an aircraft colliding with a man-made feature or dense forest

is just as catastrophic as an aircraft colliding with the ground, SRTM DTED was

again found to be most appropriate for an Auto GCAS [45]. SRTM DTED Level

1 and 2 data were both examined for this research. SRTM-1 is publicly available,

but SRTM-2 was only available to the DoD until recently. In Sep 2014, the White

House announced that SRTM-2 will now be made available to the public over the

next 12 months [62, 35]. The SRTM-2 data is the full resolution of the original mea-

surements from the Space Shuttle mission [62]. SRTM-2 for the US and Africa is

currently released to the public, and the next planned releases this year are for South

America and North America south of the US [62]. Table 4 shows the post spacing
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in arc-seconds, post spacing in meters, cells per degree, and matrix size for some of

the DTED and SRTM DTED levels. Note that for longitude, these nominal post-

spacing measurements are at the equator. The terms resolution and post spacing are

synonymous and will be used interchangeably.

Table 4. Digital Terrain Elevation Data Types (data from [31, 62])

DTED Level Post Spacing Post Spacing Cells per Matrix Size
(arc-seconds) (ground dist) Degree (1◦ x 1◦ tile12)

DTED-0 30 arc-sec ∼900 m 120 121 x 121
DTED-1/SRTM-1 3 arc-sec ∼90 m 1,200 1,201 x 1,201
DTED-2/SRTM-2 1 arc-sec ∼30 m 3,600 3,601 x 3,601

DTED-3 1
3

arc-sec ∼10 m 10,800 10,801 x 10,801

12A tile is defined as a 1◦ x 1◦ grid (60 NM x 60 NM at the equator) of digital terrain data [83].

The terms tile and facet are used interchangeably [83].

2.2.2.3 National Elevation Dataset.

A third type of DEM is the NED which is produced by the United States Geo-

logical Survey (USGS). The NED is available in 2, 1, 1
3

arc-second (∼10 m), and 1
9

arc-second (∼3.33 m) resolutions [94]. All but the 1
9

arc-second resolution contain

seamless elevation layers from tile to tile [94]. Although the 1
3

arc-second NED is

only available for the continental United States and parts of Alaska, its advantages

are that it is publicly available and has higher resolution than SRTM DTED Level

2 [94]. The 1 arc-second NED is available for the contiguous United States, Hawaii,

Puerto Rico, US territorial islands, Mexico, and Canada, while the 2 arc-second res-

olution also includes all of Alaska [94]. In addition to its high horizontal accuracy,

the 1
3

arc-second NED also has high vertical accuracy (eight feet Root Mean Square

Error (RMSE)) [83]. The horizontal datum is the North American Datum of 1983

(NAD83), and the vertical datum for the contiguous United States (it varies for other

areas) is the North American Vertical Datum of 1988 (NAVD88) [94]
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The USGS is currently designing another DEM called the 3D Elevation Program

(3DEP) to eventually replace the NED [82]. “The primary goal of 3DEP is to sys-

tematically collect enhanced elevation data in the form of high-quality light detection

and ranging (lidar) data over the conterminous United States, Hawaii, and the U.S.

territories” [82]. The 3DEP will be another database alternative for aircraft wanting

to integrate Auto GCAS, however, the fact that the database is currently limited to

the US means limited military application [91].

The two Auto GCAS programs most relevant to this research are the F-16 Auto

GCAS and the NASA Small UAV Auto GCAS programs. The F-16 Auto GCAS

program utilizes the void-filled SRTM DTED Level 1 for the world data while the

NASA Small UAV program utilizes the 1
3

arc-second NED for the US, the void-filled

SRTM DTED Level 1 for the non-US landmass, and other sources for any landmass

not captured by the NED or SRTM DTED [83]. Because NED is the same source

used by Google-Earth, an additional advantage was that the NASA Small UAV test

team could use Google-Earth extensively for test planning and data analysis [83].

Now that sensors and terrain databases have been reviewed, two different ways of

working with the discrete digital terrain are reviewed next.

2.2.3 Terrain Modeling/Approximation.

The two methods that have been flight tested and proven, the F-16 Auto GCAS

method and NASA’s CDTM method for Small UAV Auto GCAS, are discussed here.

2.2.3.1 F-16 Auto GCAS Terrain Scanning Method.

The F-16 DTED scan is a software scan of digital terrain vice an active scan

of actual terrain such as with radar [88]. Based on the aircraft’s current location,

the F-16 algorithm scans the DTED terrain elevation with a fan-shape scan and
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converts the 3-D digital terrain into a 2-D terrain profile data (elevation vs. range)

for quicker computational speed. Comparisons with simplified 2-D terrain data are

possible because the fan-shape scan includes all terrain within a reasonable distance

around the predicted trajectory. The height of a 2-D range bin is determined by the

highest post within each bin [88]. Figure 5 shows the Terrain Scanning and Binning

Process for the F-16 Auto GCAS.

1. Generate Scan  
 Shape Ahead 

2. Collect Terrain  
 Points 

3. Generate 2-D Profile 
(max height in each 

range bin) 

Range 

Te
rr

ai
n 

El
ev

at
io

n 

Digital Terrain Elevation Posts 

Range radii 

Range Bins 

Non-Turning Scan Shape 

Figure 5. F-16 Terrain Scanning and Binning Process [88]

2.2.3.2 Advantages and Disadvantages.

The primary advantage of this method is that it is computationally fast, however

it could sacrifice some accuracy. For example, in a low-level flight in a canyon,

the algorithm can grab a post on the canyon wall and assign that height as the

corresponding range bin height. In early flight tests, this would prohibit the pilot

from flying as low as desired in the canyon. As a remedy, a check was added to the

algorithm to automatically detect flight conditions where the pilot is purposely flying
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low [88]. In these cases, the system reduced the scan shape to a narrower polygon

which is the absolute minimum size possible [88]. This smaller scan shape allows the

pilot to fly through the canyon with a reduction in nuisances, however there is also a

reduction in CFIT protection as well.

2.2.3.3 NASA’s Compressed Digital Terrain Map Method.

NASA Dryden developed the Compressed Digital Terrain Map (CDTM) specifi-

cally for Auto GCAS applications. CDTM is the map output by the Global Elevation

Data Adaptive Compression System (GEDACS), a powerful tool that NASA Dryden

created for aircraft which do not have the required amount of onboard digital stor-

age available for the high resolution digital terrain map. The full SRTM DTED

worldmap (60◦ North to 56◦ South) is 400 Gigabytes (GB) in size. However, not all

current platforms have this much digital storage available, therefore NASA created a

unique ‘Tip-Tilt’ compression method where digital terrain data are represented as

planes that are tipped or tilted to fit terrain vice terrain being represented as discrete

posts in DTED. For the entire world, the digital terrain was reduced from ∼400 GB

to ∼170 Megabytes (MB), for an impressive compression ratio of more than 2,400:1

while maintaining elevation accuracy sufficient for an Auto GCAS [83]. With CDTM,

even aircraft with very limited storage “can carry the whole world” [71]. If only a

local map was needed (for example a 1◦ x 1◦ tile), the average size of an SRTM DTED

1◦ x 1◦ tile is ∼2.76 GB, and using the Tip-Tilt method the CDTM would be only

∼1.2 MB.

Many mathematical compression models exist. The original DTED is in raster

format where each gridded square shown in Figure 6 represents the height of the

DTED post which is located at the center of the square. The regular methods of

compression are basic thinning (low resolution raster), and tip-tilt (rectangular sloped
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facets (or tiles) tilted to approximate the terrain) [58]. Two semi-regular methods are

the binary-tree (a single tile is bisected if errors exceed tolerances) and the quad-tree

(a single tile is quartered if errors exceed tolerances) [58]. Figure 6 illustrates different

types of digital terrain compression methods.

• Regular Methods 
– Raster 

• Original DTED Format 

– Basic Thinning 
• Low Resolution Raster 

– Tip-Tilt 
• Regular Rectangular Sloped 

Facet Arranged in a Regular 
Pattern 

Raster 

Thinning 

Tip-Tilt 

Quad-Tree 

Binary-Tree 

• Semi-Regular Methods 
– Quad-Tree 

• A Single Tile is Quartered if 
Errors Exceed Tolerances / 
Flight Requirements 

– Binary-Tree 
• A Single Tile is Bisected if 

Errors Exceed Tolerances / 
Flight Requirements 

Figure 6. Digital Terrain Compression Methods [58]

NASA’s CDTM implements a binary-tree tip-tilt compression method where dig-

ital terrain data is represented as planes that are tipped or tilted to fit terrain vice

terrain being represented as posts in DTED. The source data for CDTM is a com-

bination of NGA DTED and USGD NED which is stored in raster format. “The

source raster data is fed into algorithms which take the discrete raster values and

create a continuous representation based on rectangular tiles” [46]. A tile is vertically

biased such that the tile is above all of the source raster data; in other words, the

compression algorithm only allows errors in the conservative direction [58].

GEDACS allows the user to customize digital terrain data for any application.

35



For example, GEDACS can combine the best available sources to provide the most

useful aspects of Legacy DTED, SRTM DTED and/or NED in different geographical

areas. Thus GEDACS creates a CDTM product that provides higher accuracy where

needed, such as within Special Use Airspace, and lower accuracy where not needed,

such as areas where the aircraft would only be en-route at high altitudes [84]. NASA

Dryden has successfully flight tested the CDTM map on an Android phone on their

Small UAV Auto GCAS tests in 2012 [71, 83].

2.2.3.4 Advantages and Disadvantages.

The F-16 terrain scan method and the CDTM both have advantages and disad-

vantages.

For a real-time implementation of Auto GCAS, one advantage to compressing

the data is that it can be searched more quickly. Another advantage is that no

interpolation is required between terrain posts because a tile has been fit between

each post. The CDTM is a continuous realization but is only class C0, and therefore

not differentiable. If the solution technique employed in Auto GCAS requires terrain

gradient information, it is not available.

Now that two possible methods of terrain modeling have been presented, spe-

cific ground collision avoidance algorithms are discussed next. Manual ground col-

lision avoidance algorithms are covered first, followed by automatic ground collision

avoidance algorithms. Section 2.2.4 is provided to put the research and algorithms

developed and documented herein in context with other systems.

2.2.4 Manual Ground Collision Avoidance Algorithms.

In order to provide an understanding of the history that laid the foundation for

automatic collision avoidance systems, manual systems are discussed to provide a
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complete background. A great amount of research and development has taken place

over the last three decades in the area of ground collision avoidance, and the knowledge

gained from development of the manual systems also enabled the development of Auto

GCAS. Manual ground collision avoidance systems can be grouped in two categories,

those that utilize DTED and those that do not [28]. The initial focus will be on the

history of the F-16 manual altitude warnings systems. First, the manual systems that

do not use DTED are reviewed, which include many F-16 systems as well as Ground

Proximity Warning System (GPWS). Second, the manual systems that utilize DTED

are reviewed, including Enhanced GPWS, US Navy Terrain Advisory Warning System

(TAWS), TAWS II, and the F-16 systems that utilize DTED.

2.2.4.1 Manual Systems that Do Not Use DTED.

F-16 Manual Ground Collision Avoidance Systems

The F-16 includes many manual collision avoidance or warnings systems which

have been added over the years to increase CFIT protection. These manual systems

merit mentioning because they show the cumulative learning process and technology

advances that were current at the time. The intent is to show the evolution of

technology that was developed to combat CFIT on the F-16 over the years, ultimately

resulting in the F-16 Auto GCAS technology. This section details the history of

predictive (manual) F-16 ground collision avoidance systems which include Line-in-

the-Sky with the Modular Mission Computer and barometric altimeter as the sensors,

Altitude Low warning with the radar altimeter as the sensor, Descent Warning After

Takeoff with multiple sensors, and ground clobber (known as Ground Avoidance

Advisory Function) with the air-to-ground radar or the radar altimeter as the sensor.

– Line-in-the-Sky (LIS)

All F-16 A/B aircraft were originally equipped with Line-in-the-Sky (LIS) mecha-
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nization, and all F-16 C/D aircraft are equipped with LIS as well. With LIS, the pilot

can select a mean sea level (MSL) altitude ‘floor’. The Modular Mission Computer

(MMC) in the F-16 Block 40/50 (and the commercial fire control computer (CFCC)

in the F-16 Block 25/30/32) aircraft uses inputs from the barometric altimeter to

provide a reference signal to compute altitude [28]. The MSL altitude floor set by the

pilot is constantly compared to the MMC’s estimate of actual system MSL altitude.

If the MMC estimate of aircraft MSL altitude goes below or penetrates the pilot’s

MSL floor set in LIS, then the system provides an aural warning of ‘ALTITUDE!

ALTITUDE!’ as well as a visual warning [56]. The MSL floor warning provided by

LIS is useful for basic fighter maneuvers (BFM), i.e. dogfighting.

– Altitude Low (ALOW)

All blocks of the F-16 aircraft currently have Combined Altitude Radar Altimeter

(CARA) capability which includes an Altitude Low (ALOW) warning mechaniza-

tion. CARA ALOW is mechanized with a pilot-selectable above ground level (AGL)

altitude floor. The calculations for triggering the visual and aural warnings are ac-

complished by the MMC in the F-16 Block 40/50 (and by the CFCC in the F-16

Block 25/30/32) [28]. The MMC compares the AGL altitude floor to the CARA’s

own AGL altitude. When the aircraft penetrates the pilot-selected AGL floor, the

MMC provides two types of visual warnings: the MMC flashes the radar altitude

on the HUD and illuminates the ‘RDR ALT LOW’ warning light, in conjunction

with an aural warning of ‘ALTITUDE! ALTITUDE!’ [56]. The AGL floor warning is

beneficial for low-level operations over relatively smooth terrain [56, 84].

– Descent Warning After Takeoff (DWAT)

All F-16 blocks currently have the Descent Warning After Takeoff (DWAT) func-

tionality to warn of an impending collision of terrain if the aircraft has insufficient

climb rate after takeoff. DWAT requires no pilot action and is automatically active
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for the first three minutes after takeoff (including touch and go takeoffs)[57]. If the

landing gear is up and the time since takeoff is under three minutes, the DWAT sys-

tem is armed at 300 feet above the runway MSL elevation and is de-armed at 10,000

feet above the runway MSL elevation or three minutes after takeoff, whichever comes

first [57]. DWAT uses a combination of barometric altitude and CARA altitude.

DWAT “has no pilot selectable options” [57]. If the current aircraft descent rate is

such that it will cause the aircraft to penetrate the runway altitude in 30 seconds,

then DWAT provides an aural ‘ALTITUDE! ALTITUDE!’ warning (only issued once

per takeoff) [57].

– “Ground Clobber” or Ground Avoidance Advisory Function (GAAF)

Early F-16 Blocks had another capability called ‘ground clobber’ which used the

air-to-ground radar and radar altimeter as sensors. The ground clobber mechanization

was “based on air-to-ground radar ranging data or system altitude height above steer-

ing point and is available only in air-to-ground weapon delivery modes” [56]. Height

above target (HAT) (computed using air-to-ground ranging data) is the primary al-

titude input to the system for calculating aircraft AGL [56]. When air-to-ground

ranging is not available, aircraft AGL is based on the system altitude height above

steering point [56].

The original ground clobber provided only visual warnings, which include a ‘break

X’ on the HUD as well as a matrix/line of Xs on the radar electro optical (REO)

display. Enhanced ground clobber (EGC) mechanization was integrated on the F-16

C/D Block 40 in the mid-1980s [56]. The EGC software takes into account weight

and drag and a terrain clearance buffer to improve predictions and pullout maneuvers.

For example, the EGC calculations predict total altitude loss during the pull-up to

include altitude lost due to: pilot reaction time, roll response time, altitude lost

during the dive recovery (based on weight and drag, and if applicable, lack of available
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gs)[56] [57]. EGC warnings are triggered by a simple predictive algorithm based on

this predicted altitude loss and when the aircraft’s current projected velocity vector

will penetrate the set buffer above terrain [28]. EGC added an aural warning message

of “PULL UP! PULL UP!” and a third visual warning was included: a heads-down

break X on the Multi-Function Display (MFD) appears two seconds prior to the break

X on the HUD and the new aural message [56].

Because of its possibly negative connotation, ground clobber was renamed Ground

Avoidance Advisory Function (GAAF). All blocks of the F-16 are currently equipped

with GAAF.

In 1982 the USAF recognized the need to develop a predictive ground proximity

warning system (GPWS) for fighter and attack aircraft with the goal of reducing

CFIT [56]. “The intent of TAF SON 311-82 [the 1982 Tactical Air Force Statement

of Operational Need study] was to take advantage of current or near-term technology

to provide a wider margin of safety, i.e., predictive ground proximity warning, for

the low-level, high performance fighter and attack aircraft” [56]. In 1985, the USAF

directed General Dynamics to conduct a GPWS alternatives and comparison study

on the F-16. In March of 1987, General Dynamics published a report entitled “F-16

Ground Proximity Warning System Study” which fulfilled the USAF requirement for

a GPWS study. The conclusion of this study was that “The most effective systems

for preventing CFITs were the Digital Terrain System or the electronically scanned

phase array radar.” [56] This conclusion led to the advent of using the digital terrain

based reference systems Predictive GCAS (PGCAS) and Automatic GCAS (Auto

GCAS) on the F-16 [56].

Ground Proximity Warning System (GPWS)

Honeywell’s Ground Proximity Warning System (GPWS) provides six types of

alerting modes to aircrew to signal that the aircraft is on a collision course with the
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ground, and GPWS is mandated to be installed on all US jet transport aircraft [42, 43].

The six alerting modes (which are also incorporated into Enhanced GPWS as well)

are [42, 43]:

- Mode 1: Excessive Descent Rate

- Mode 2: Excessive Terrain Closure Rate

- Mode 3: Altitude Loss After Takeoff

- Mode 4: Unsafe Terrain Clearance

- Mode 5: Excessive Deviation Below Glideslope

- Mode 6: Advisory Callouts

In US FAA Circular AC23-18 published in 1974, the FAA mandated that all large

turbine and turbojet commercial aircraft install GPWS [32]. According to Snow and

Moroze in 1999, “The GPWS mandate reduced CFIT accidents from about 9 per

year in the seven years immediately preceding the mandate to about 4 per year after.

This rate has remained fairly constant” [61].

Because GPWS uses the radar altimeter as a primary sensor, GPWS has no

forward-looking capability and can only protect the aircraft from collisions with ter-

rain directly beneath the aircraft.

2.2.4.2 Manual Ground Collision Avoidance Systems that Use DTED.

This section covers Enhanced GPWS, the US Navy Terrain Awareness Warning

System (TAWS) and TAWS II, and the five F-16 manual systems that are part of the

Digital Terrain System.

Enhanced GPWS (EGPWS) or Terrain Awareness Warning System (TAWS)

Enhanced GPWS was a term coined by Honeywell who designed the first Enhanced

GPWS (EGPWS) in 1980. According to Honeywell, “Honeywell pioneered the first

Terrain Awareness and Warning System (TAWS) over 30 years ago. Today, we offer

41



Enhanced TAWS protection in our ‘EGPWS’ for thousands of aircraft of all types

around the world. EGPWS is already credited with 30 documented aircraft saves,

including the first helicopter/obstacle save with our MK XXII” [44].

Since 2000, EGPWS has become commonly known as Terrain Awareness Warning

System (TAWS) due to the fact that the FAA used this more generic name in its US

FAA Circular AC 25-23 published in March 2000. The FAA anticipated there would

be multiple manufacturers of TAWS devices and did not want to use a brand name

or give preference to Honeywell, the sole supplier of EGPWS at the time. “EGPWS

includes all the same features as the current GPWS but also includes a predictive

component. This predictive component would enable the EGPWS to provide more

warning time – up to 60 seconds – in cases where impact into precipitous terrain is

imminent” [61]. This forward-looking capability is made possible through EGPWS’

internal databases, including a terrain database, an obstacle database, and airport

runway data. In addition to the six GPWS alerting modes described in the previous

section, EGPWS is able to combine this predictive component with its own internal

databases to provide additional alerts and displays that provide “enhanced situational

awareness and safety”, hence the term enhanced GPWS [42].

In Honeywell’s Aug 2011 EGPWS Pilot’s Guide, Honeywell states, “The EGPWS

uses aircraft inputs including geographic position, attitude, altitude, airspeed, and

glideslope deviation. These are used with respect to internal terrain, obstacle, and

airport databases to predict a potential conflict between the aircraft flight path and

terrain or an obstacle. A conflict will result in the EGPWS providing a visual and

audio caution or warning alert” [43]. While cautions and alerts are provided, EGPWS

does not provide the pilot cues for how to perform a manual recovery to avoid the

terrain.
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US Navy Terrain Awareness Warning System (TAWS)

The US Navy has been developing TAWS since 1997 and testing TAWS on its

aircraft since 2001. TAWS is currently installed on the Navy/Marine Corps’ F/A-

18 C/D/E/F Hornet and Super Hornet, EA-18G Growler, AV-8B Harrier, T-45C

Goshawk trainer, and VH-60N Presidential Helicopter [4, 5, 65]. TAWS is the nat-

ural progressive improvement from the Navy-developed GPWS. The limitation of

GPWS technology has always been that while it provides adequate look-down safety

protection over level or descending terrain, it cannot provide forward-looking protec-

tion which is needed for rising terrain. GPWS has been in the Navy/Marine Corps

fleet since 1997, however these early GPWS algorithms had nuisance warnings in cer-

tain flight regimes [16]. “These nuisance cues eroded pilot confidence and led to a

general technique of disabling the system prior to takeoff” [16].

TAWS uses SRTM Level 1 DTED for the high-speed fighter and attack aircraft to

provide the forward-looking capability not possible with radar altimeter alone. SRTM

Level 2 DTED is used for TAWS fielded on helicopters such as the VH-60N. Even with

the forward-looking capability that TAWS provides, the Navy Air Combat Electron-

ics Program Office (PMA-209) who manages both GPWS and TAWS stresses that

“GPWS/TAWS are safety-backup systems, NOT performance aids” [65]. In order

to reduce nuisance warnings which troubled GPWS, TAWS computes two predicted

trajectories, the Vertical Recovery Trajectory (VRT) and the Oblique Recovery Tra-

jectory (ORT). The VRT is a roll to wings-level followed by a 5-g pull13, while the

ORT is a 5-g pull while maintaining the current bank angle [16]. If only one of two

trajectories is predicted to intersect terrain, no visual or aural recovery warning will

be given to the pilot since the second recovery is still available. However, once one

trajectory (for example, the VRT) intersects for 4 frames or more (at a 10 Hz rate)

135-g pull or 80% of the maximum sustainable g for slower speed flight regimes [4].
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and the second trajectory (in this example, the ORT) intersects for at least 1 frame,

the TAWS algorithm will warn the pilot to execute the ORT.

Figure 7. F-18 TAWS Vertical and Oblique Recovery Trajectories [16]

In Figure 7, the red line represents the VRT and the blue line represents the ORT.

The VRT and ORT are each divided up into ‘slices’. The VRT slices are illustrated as

red dots and the ORT slices as blue dots in Figure 7. A slice is a point at which the

SRTM DTED terrain elevation is compared to the predicted aircraft altitude from

the VRT or ORT [4]. The VRT is always divided into 15 slices, while the number of

slices for the ORT varies between 10 and 15 depending on bank angle when used with

Level 1 DTED. Note that TAWS does not operate with Level 0 DTED because it is

too coarse for any effective protection without creating nuisance warnings [4]. The

VRT prediction ends once the aircraft reaches 90◦ nose up and the ORT prediction

ends once a 90◦ heading change is achieved. The number of ORT slice points is bank

angle dependent because the endpoint of the ORT is a 90◦ heading change. At low

bank angles and roll rates, the ORT is longer; therefore closer to 15 slices would be

used. At high bank angles and roll rates, the ORT is shorter; therefore closer to 10
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slices would be used so that the slices do not bunch up on top of each other. In

addition to providing directive aural warnings to the pilot, TAWS also provides the

pilot directive visual cues for how to perform a manual recovery to avoid the terrain.

“The most common combination would be a ‘ROLL-RIGHT [or LEFT]!’ followed by a

‘PULL-UP!’ voice message. The combination of the directive aural warning and HUD

arrow is designed to provide the pilot with unambiguous information that allows for

timely and appropriate responses to the warnings to avoid ground collision” [16].

As of October 2014, Navy TAWS has been credited with six documented saves in

the F-18 community with anecdotal/undocumented evidence of saves in the AV-8B [4].

In addition, the Naval Safety Center has declared that the introduction of TAWS into

the F-18 fleet has made a statistically significant reduction in CFIT mishaps in the

F-18 community [4].

US Navy TAWS II

Figure 8 shows the build-up of protection from GPWS to TAWS to TAWS II.

Figure 8. The US Navy’s CFIT Avoidance Capability [65]

As explained previously, GPWS only provides CFIT protection over flat and descend-

ing terrain, while TAWS adds forward looking capability through the use of GPS and
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DTED. TAWS II includes prior GPWS and TAWS capabilities and introduces the use

of higher fidelity SRTM DTED Level 2 for terrain protection and a digital Vertical

Obstruction Database (VOD) for obstacle protection [4]. NGA’s VOD is the digital

database for TAWS II obstacle protection [4]. TAWS II became a program of record

in FY13 and simulator testing started in 2013 [4]. Additionally, the Navy has already

incorporated SRTM DTED Level 2 for the rotary-wing TAWS effort currently under

development [4, 5].

F-16 Manual Ground Collision Avoidance Systems that use DTED

– Digital Terrain System (DTS)

Digital Terrain System (DTS) was the first operational F-16 system to utilize

DTED [23]. DTS was developed primarily to combat CFIT [23]. The five DTS

functions are [23]:

1. Terrain Referenced Navigation (TRN)

2. Predictive Ground Collision Avoidance System (PGCAS)

3. Obstacle Warning and Cueing (OW&C)

4. Data Base Terrain Cueing (DBTC)

5. Passive Ranging (PR)

Briefly, TRN provides enhanced navigation accuracy using a Kalman filter, PG-

CAS provides all-attitude predictive ground collision avoidance advisories and warn-

ings, OW&C provides advisories and warnings for man-made obstacles, DBTC pro-

vides a vertical steering cue to assist the pilot in clearing terrain at or near a pre-

selected clearance height, and PR provides passive ranging inputs for weapon delivery

computations [23]. Table 5 shows which DTS functions utilize DTED, the vertical

obstruction database (VOD), or both [23].

USAF Block 40/50 F-16s have all of these DTS functions as do the USAF Block

25/30/32 F-16 aircraft. TRN, PGCAS, and OW&C are the functions that have
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Table 5. Digital Terrain System Functions and Databases [23]

DTS Function DTED VOD

TRN X
PGCAS X X
OW&C X
DBTC X X

PR X

demonstrated the most tactical utility [28]. The primary goal of DTS was to reduce

the number of CFIT mishaps, and it is through PGCAS that it was designed to

achieve that goal [23]. PGCAS is the most applicable to this research and is covered

more in-depth below.

– Predictive Ground Collision Avoidance System (PGCAS)

PGCAS was developed in parallel with F-16 Auto GCAS during the mid-1980s.

The most current collision avoidance software at the time on the F-16 was GAAF,

however GAAF could only take into account terrain below the aircraft [23]. A demon-

stration system using TERPROM14 digital terrain software was first flown on the

General Dynamics F-16 #B2 aircraft in 1985 [23]. As a result of the 1987 F-16

GPWS study and the success of the TERPROM demo flights, DTS with PGCAS was

recommended in order to take into account terrain in front of the aircraft [56].

PGCAS development started officially in 1989 as a combined USAF-General Dy-

namics (later Lockheed Martin) effort through the F-16 System Program Office

(SPO). It should be noted that PGCAS and Auto GCAS were originally indepen-

dent but parallel efforts. AFRL research on Auto GCAS started before the F-16

SPO started working on DTS/PGCAS. However, PGCAS was fielded first in the late

1990s. The original Auto GCAS algorithms came out of AFTI and matured over time

to use similar functionality from the DTS/PGCAS implementation since Lockheed

14The DTS software is based on Terrain Profile Matching (TERPROM) software, a British
Aerospace Systems and Equipment (BASE) product [23].
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Martin was the contractor for both the DTS/PGCAS and Auto GCAS programs.

Today the two programs complement each other to provide the best CFIT protection

for the F-16. There were two phases of DTS flight tests at Edwards AFB, CA. 55

developmental test (DT) sorties were flown as part of DTS Phase 1 from 1995-1996,

and 149 DT sorties were flown as part of DTS Phase 2 from 1996-1998 [28]. Of these

sorties, approximately 60 were PGCAS flight tests [28].

The predicted recovery trajectory for PGCAS is a roll to wings level and 4-g

pull [23]. When this predicted trajectory penetrates the pilot-selectable minimum

terrain clearance (MTC) height, the PGCAS algorithm provides both visual and

auditory advisories for the pilot to perform a manual recovery [57]. 1.1 seconds prior

to the HUD break X, a flashing break X is displayed on both MFDs in case the

pilot is heads-down in the cockpit [57]. A flashing break X and ‘GND PROX’ are

then displayed in the HUD concurrent with a voice message warning of ‘PULL UP!

PULL UP!’, indicating that the pilot must perform the PGCAS recovery maneuver

immediately [57].

– Pilot Activated Recovery System (PARS)

PARS was developed concurrently with F-16 Auto GCAS as a flight test aid for

a potentially disoriented test pilot. PARS is a manual initiation of the Auto GCAS

recovery that was made available for safety reasons during Auto GCAS flight test,

during which a PARS recovery could be activated by squeezing the trigger switch

on the control stick [87]. Note that PARS is not terrain-aware like Auto GCAS. As

previously discussed in Section 1.1, PARS was the system used for the 1997 F-16 Auto

GCAS flight tests that determined the Time Available threshold of 1.5 seconds. For

nose low conditions at the time of activation, the PARS recovery is identical to the

Auto GCAS recovery of an automatic roll to wings-level and pull to 5gs. “PARS was

initially conceived as a flight test aid to help address concerns that the distractions
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of low-level night flying with the off-axis [Helmet-Mounted Display] HMD might lead

to pilot disorientation. In fact, PARS has shown the potential to overcome the same

problem in any operational situation where the pilot may come to doubt which way is

up. With a single hands-on switch action, the pilot commanded PARS to perform an

attitude recovery maneuver. The maneuver would take the aircraft from any arbitrary

initial attitude to a wings level, slightly nose high attitude” [41].

The conclusions from Wright Laboratory’s 1992 AFTI F-16 flight test report were

that “The PARS was universally accepted by the AFTI/F-16 pilots as a useful aid for

recovering the aircraft from unusual attitudes, and was in fact used in this capacity

on several occasions. The algorithm is simple and straightforward and should be

strongly considered for any application where pilot disorientation might occur” [41].

PARS is being fielded in 2014 as part of the Auto GCAS software M6.2+ com-

bined with the modified Digital Flight Control Computer (DFLCC) software in all

operational F-16 Block 40 and 50 aircraft to aid a pilot to manually recover from

disorientation. PARS is triggered via the Advanced Modes Switch (as a press and

latch to engage switch) on the left front glare shield avionics panel.

2.2.5 Automatic Ground Collision Avoidance Algorithms.

One very important difference between manual and automatic ground collision

avoidance systems is the assumed state of consciousness of the pilot. GPWS, TAWS,

and PGCAS and all manual variants assume the pilot is still aware and in the loop.

Even though the pilot may be experiencing target-fixation or spatial-disorientation,

these manual algorithms assume that the pilot is still aware, can hear aural warn-

ings and see recovery cues and consequently respond to them with proper stick in-

puts. Auto GCAS does not assume the pilot is in the loop nor that the pilot can

respond. Although Auto GCAS will safely recover a pilot who is target-fixated or
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spatially-disoriented, Auto GCAS will also recover a pilot experiencing g-induced loss

of consciousness (g-LOC) or a pilot otherwise incapacitated. The following conclusion

from the 1993 AFTI/F-16 Automated Recovery System test report reveals another

advantage of an automatic recovery system: “Also during this phase of flight test, the

advantages of an automated flyup maneuver over a manual flyup became apparent.

Since there was no need to compensate for pilot reaction time, the automated flyup

maneuver was delayed which helped prevent nuisance flyups” [3]. This is due to the

fact that an automated recovery such as Auto GCAS, (because it is a last-ditch rescue

maneuver) is commanded after an aware pilot would normally recover the aircraft.

There are four automatic ground collision avoidance algorithms that have been

developed, three of which have been flown. These four systems will be reviewed in

the next section: 1) the USAF F-16 Auto GCAS, 2) the Swedish Gripen Auto GCAS,

3) the US Navy Automatic TAWS, and 4) NASA Small UAV Auto GCAS. The F-

16 Auto GCAS, the Swedish Gripen Auto GCAS, and the NASA Small UAV Auto

GCAS have been flight tested. As stated previously, the F-16 Auto GCAS was fielded

in 2014. Note that none of these four algorithms use an optimal control solution

technique; instead they all use some type of pre-planned maneuver or maneuvers.

2.2.5.1 USAF F-16 Auto GCAS.

The development of the current Auto GCAS algorithm can be traced back to

the early flight tests of the Advanced Fighter Technology Integration (AFTI)/F-16

program. In 1984 the AFTI/F-16 program developed an automatic ground collision

avoidance maneuver as a test safety aid for the advanced weapon delivery program

called Automated Maneuvering Attack System (AMAS). “The [AMAS] system was

used for automatic gun tracking of airborne targets and maneuvering bomb deliveries.

The aircraft demonstrated the ability to accurately deliver unguided bombs using 5-g
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curvilinear toss delivery at 200 feet above the ground” [30].

In order to ensure the test pilots would be safe during these low altitude bomb

deliveries, an all-attitude automatic ground collision avoidance system was developed

called the Automated Recovery System [30]. The AMAS testing was only accom-

plished for a partial F-16 envelope and assumed a flat Earth, hence, all the deliveries

were over level terrain such as dry lakebeds. Thus, the genesis of the current Auto

GCAS algorithm was as a test safety aid for these automated curvilinear toss bomb

deliveries.

Figure 9. Auto GCAS Development Timeline [7, 45]

Figure 9 shows the Auto GCAS development timeline which spans the last three

decades. The Automated Recovery System (ARS) flight testing for the Close Air

Support (CAS) Block II/III phase on the AFTI/F-16 consisted of 118 flights that

were conducted from 8 June 1991 to 14 January 1993 [3]. The motivation for the

ground collision avoidance maneuver was as a safety aid for Close Air Support (CAS)

and night attack operations testing. “The ARS consisted of three systems: the All-
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Terrain Ground Collision Avoidance System (AT GCAS), the flat-earth GCAS, and

the Pilot Activated Recovery System (PARS)” [3]. The ARS testing again included

only a partial envelope, but now a digital terrain database was used instead of only the

flat Earth assumption. “Automated weapon deliveries using the AFTI/F-16 AMAS

bombing algorithm were completed at a variety of conditions. In this case, the bomb-

ing impact altitude was set so that upon weapons delivery, the aircraft would require

a flyup to prevent a penetration of the [Minimum Clearance Distance] MCD. For all

test runs the AT GCAS prevented the aircraft from penetrating the MCD during

weapon release” [3]. Additional conclusions of the ARS testing were that “Both all-

terrain and flat-earth GCAS prevented penetration at floor altitudes as low as 50 feet

while the PARS recovered the aircraft from recognized instances of spatial disorienta-

tion. Because it was automated and integrated with a Terrain Referenced Navigation

(TRN) system, the AT GCAS was highly complex and demonstrated excellent traits

such as consistent recoveries and minimization of nuisance flyups” [3]. This testing of

a digital terrain database integrated with a ground collision avoidance maneuver led

to the incorporation of Digital Terrain System (DTS) and PGCAS into production

F-16s in 2002.

Although there was no additional development of the Auto GCAS system from

1993-1997, the AFTI/F-16 project team continued to fly Auto GCAS sorties by sup-

porting various mishap investigation boards and by supporting subsequent avionics

testing that utilized automatic attack systems [87]. It was during this period that

Auto GCAS was credited with its first save. “All of the [Automatic-Collision Avoid-

ance] Auto-CA systems functioned reliably as designed even in the face of numerous

unplanned failures. The most significant event during this period occurred in 1995

when an undetected failure caused the automated bombing system to initiate a 5-g

barrel roll towards the ground from 500 feet above ground level. The Auto-GCAS
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initiated a recovery from roughly 460 knots at 420 feet above ground level in a 13

degree dive at 115 degrees of bank while the bombing system was attempting to roll

through the inverted at 120 degrees per second while pulling 5-gs of normal load fac-

tor. The Auto-GCAS bottomed the aircraft out at 290 feet above the ground. The

pilot reacted to recover the aircraft 0.5 seconds after the Auto-CA system initiated

the recovery. Post flight analysis based on flight test data determined that the 0.5

second delay in the pilots reaction would have resulted in an additional 475 feet of

altitude loss or his recovery would have passed 185 feet below ground level. The

Auto-GCAS had prevented the loss of the AFTI/F-16 pilot and aircraft” [87].

The Joint AFTI Sweden GCAS program was a cooperative effort between the Air

Force Research Labs, NASA, and the Swedish government from 1997-1998. The Joint

AFTI program had two phases. The first phase, January to October 1997, focused

on nuisance criteria testing, and the second phase, July to November 1998, expanded

to the full envelope Auto GCAS testing.

In 2007 the Defense Safety Oversight Council (DSOC) in the Office of the Secre-

tary of Defense (OSD) funded the Automatic Collision Avoidance Technology/Fighter

Risk Reduction Program (ACAT/FRRP) in response to the 2003 and 2007 SecDef

mandates to reduce mishaps by 50% and 75%, respectively. ACAT/FRRP testing

took place from 2007 to 2010 on a production F-16D Block 50 Model, tail number

90-840. 103 tests flights were conducted which spanned 141 total flight hours and

included 1,670 automatic recoveries. The goal was to perform Auto GCAS risk re-

duction to see if it was viable for DoD fighter platforms, specifically the F-16 Blocks

40 and 50 and the F/A-18 E/F. Specifically, all F-16 CFIT accidents were put into

nine categories [87]. As stated in Chapter I, a total of 48 flight tests were flown across

the nine categories, and the team concluded that the current Auto GCAS algorithm

would have saved the pilot and aircraft in 98% of those accidents [87]. The conclu-
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sions of the ACAT/FRRP testing were that Auto GCAS provided excellent mishap

prevention and nuisance-free operation [80]. The production Auto GCAS algorithm

completed flight test in Mar 2013 at the 416th Flight Test Squadron at Edwards AFB

CA as part of Operational Flight Program (OFP) M6.2+ and was fielded on all US

operational F-16 Block 40 and 50 aircraft in late 2014.

F-16 Auto GCAS is not limited to aircraft with digital flight control systems.

Lockheed Martin and AFRL have developed an innovative and cost effective method

to adapt Auto GCAS to F-16s with analog flight control systems by “adding re-

dundant digital processor modules to the existing analog flight control computers of

pre-block 40 F-16s” [17, 29]. The technology results in a hybrid analog/digital flight

control architecture which is called Hy-Tech (Hybrid Technology) [40]. “This will not

only allow Auto GCAS to be added to F-16s with analog flight control computers

but demonstrates a technical path forward for incorporating Auto GCAS onto other

older aircraft with analog flight control computers” [17]. The Hy-Tech program has

successfully completed safety of flight testing in 2013 and initial demonstration flight

testing in 2014 [29].

In addition to the F-16, Auto GCAS technology is also planned for the F-22 and

the F-35. The Line-in-the-Sky (LIS) variant of Auto GCAS is currently being flight

tested on the F-22 and is planned to be fielded in calendar year 2015 as part of Update

5. F-22 LIS is mechanized such that when a pilot-selected MSL floor is predicted to

be penetrated, a roll to wings-level and a nominal 5-g pull recovery is executed by the

autopilot. Auto GCAS is also planned to be fielded on the F-35 in Block 4 (otherwise

known as Follow-On Development) no later than 2024. F-35 Auto GCAS shares the

basic functionality of F-16 Auto GCAS where there is a single pre-planned roll to

wings-level and 5-g pull automatic recovery.
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2.2.5.2 Swedish Gripen Auto GCAS.

The Swedish Air Force shares the common history with the US for the 1997-1998

Joint AFTI Sweden GCAS testing conducted at Edwards AFB on the AFTI F-16.

During this Joint testing (conducted with the USAF, NASA Dryden, and Lockheed

Martin), nuisance criteria were developed and tested and full-envelope Auto GCAS

testing was accomplished.

Saab has successfully integrated Auto GCAS on the JAS-39 C/D Gripen, and the

final 25 Gripen Auto GCAS verifying flight tests were completed in Sweden from May

to December 2013 [70]. The Auto GCAS functionality will be fielded to the Swedish

Air Force JAS-39 C/D fleet in 2015 as part of the Mission System 20 (MS20) software

block upgrade [51].

The JAS-39 C/D Gripen has the same basic Auto GCAS functionality as the F-16,

where a predicted trajectory is constantly computed using a pre-planned roll to wings-

level and 5-g pull recovery maneuver [70]. When this predicted trajectory intersects

digital terrain, the autopilot commands this predicted maneuver as the automatic

recovery. There is a small difference in the warning implementation between the

Gripen and the F-16 [70]. In the Gripen Auto GCAS implementation, the pilot

will get visual and aural warnings (arrows showing the direction to roll and pull are

provided on both the heads-down and heads-up displays simultaneous with an aural

‘PULL-UP! PULL-UP!’ message followed by a tone) ∼1.5-2.5 seconds prior to the

automatic recovery and is expected to manually command a wings-level roll and 5-g

pull up [70]. If the pilot does not execute this recovery, then the Auto GCAS logic

commands the automatic recovery [70]. In the F-16, the warning is not built into

the Auto GCAS but rather in the Predictive GCAS which is a separate system. The

Predictive GCAS provides the warnings to the pilot, and if no action is taken by the

pilot, then the Auto GCAS commands the automatic recovery.
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Auto GCAS will also be included in the new Mission System 21 (MS21) software

for the next generation Gripen E/F which is currently under development and ex-

pected to be fielded to the Swedish Air Force in 2018 [70]. In December 2013, the

Swedish government awarded a contract to Saab to convert 60 Gripen C to Gripen

E aircraft [51, 86]. Saab is looking into the possibility of implementing different logic

for very low-level flying in order to provide better CFIT protection for some specific

cases [70]. The desire is to come up with a method for low-level flying that keeps the

nuisance-free operation without sacrificing CFIT protection [70].

2.2.5.3 US Navy Automatic Terrain Advisory Warning System.

While the TAWS team understood it was first and foremost a passive system, from

the inception of the TAWS planning and design they made sure to put hooks in the

algorithm for an active TAWS system in the future if one was desired. In FY10, OSD

gave money to the Navy and to the Air Force to put an automatic system on the F/A-

18 E/F Super Hornet and F-16 C/D Block 40 and 50, respectively [98]. The verbiage

from OSD stipulated that either implementing Auto GCAS or automating TAWS was

a viable solution. The Navy Air Combat Electronics Program Office (PMA 209) went

to work on automating their TAWS algorithm, called Automatic TAWS (ATAWS).

However, the F-18 program office (PMA 265) analyzed the situation and determined

that although ATAWS was a good idea they could not justify the return on investment

of the significant cost and time that would need to be invested to validate and verify

the software [4]. Allowing a flight control system to take control of an aircraft away

from the pilot requires substantial verification. Their analysis was based on the fact

that there have been no CFIT accidents in the F/A-18 E/F Super Hornet since 2004

when they finished Operational Test [4]. This can be attributed to the fact that the

Super Hornet was born with TAWS as well as display improvements and anti-spin
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control [4]. The F/A-18 E/F came off of the production line with the Tactical Aircraft

Moving Map Capability (TAMMAC) which had the TAWS algorithm installed, while

the F/A-18 C/D models had to be retrofitted with the TAMMAC in 2005 which

is when they obtained TAWS. In addition, Hornet and Super Hornet aircrew have

reported five documented CFIT saves that were attributed to GPWS and TAWS [4].

Based on the superior safety record of the Super Hornet, the Navy just could not

justify the business case for ATAWS on the Super Hornet. While ATAWS made it to

the planning phase, neither simulation nor flight test on ATAWS ever occurred.

2.2.5.4 NASA Small UAV Auto GCAS.

The goal of NASA’s Small UAV Auto GCAS test was to demonstrate that the

Auto GCAS algorithm could be hosted on an unmanned aircraft for possible future

implementation on NASA’s Ikhana testbed (similar to an MQ-9 Reaper) [84]. NASA

also wanted to take the proven successes of the F-16 Auto GCAS algorithm and tackle

the challenges of adapting it to another airframe.

The innovations that build on previous Auto GCAS testing include: 1) using a

remotely piloted aircraft as the testbed (NASA chose to use the Dryden Remotely

Operated Integrated Drone (DROID) as the testbed), 2) hosting the Auto GCAS al-

gorithm on a smart phone which could either command the aircraft from the ground

via telemetry (TM) or ride onboard the aircraft, 3) a new scan pattern called the

‘cylindrical’ (or ’beer can’) scan pattern, 4) the inclusion of two lateral escape ma-

neuvers in addition to the straight ahead maneuver, and hence an algorithm to choose

the best maneuver out of the three possibilities, and 5) the compression of the digital

elevation model (DEM) [83]. In addition to the single pre-planned recovery maneuver

that the F-16 Auto GCAS had (i.e. roll to wings-level and pull), NASA’s Small UAV

program added a 40◦ left and 40◦ right turning escape as two additional maneuvers.
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From January to May 2012, NASA flew 21 Auto GCAS sorties on the DROID with

208 test runs. 15 of the sorties were with the Android phone on the ground, controlling

the DROID through TM, then 6 were flown with the Android phone on board the

DROID [83]. Many of the 208 test runs were unusable due to TM dropouts, however

there were 52 Auto GCAS automatic recoveries that were considered valid. Of these

52, the majority were lateral escapes. The breakdown was 24 left, two straight (roll to

wings-level and pull), and 26 right recoveries [83]. The test team designed the system

so that they had the option of turning the lateral escapes On or Off. When flown

with all three escape options, there were no nuisance activations [83]. When flown

with the left and right escape options disabled, there were multiple, highly disruptive

nuisance activations [83]. This supports the Navy’s similar conclusion from TAWS

testing that including the Oblique Recovery Trajectory in addition to the Vertical

Recovery Trajectory reduced nuisance warnings.

Section 2.2 provided a description of the most important systems involved in a

ground collision avoidance system. An overview of 1) sensors, 2) terrain databases, 3)

terrain modeling/approximation, and 4) both manual and automatic ground collision

avoidance algorithm was presented. Four automatic ground collision avoidance algo-

rithms were reviewed, which included 1) the USAF F-16 Auto GCAS, 2) the Swedish

Gripen Auto GCAS, 3) the US Navy Automatic TAWS, and 4) NASA Small UAV

Auto GCAS. The NASA Small UAV Auto GCAS used a ‘Best of 3’ approach by

choosing and implementing the best of three pre-planned recovery maneuvers. How-

ever, none of these methods used an optimal control solution technique to solve the

problem. Optimal control approaches are reviewed in the next section.
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2.2.6 Optimal Control Approaches to Obstacle Avoidance Problems.

Optimal control solutions have been applied to aircraft obstacle avoidance prob-

lems with much success. Bollino, Lewis, Sekhavat, and Ross used direct orthogonal

collocation (also called pseudospectral methods) with Legendre Gauss Lobatto (LGL)

collocation points to generate a time-optimal trajectory for simulation of a UAV flying

through an obstacle-rich urban environment [15] and extended the work to optimal

trajectories for simultaneous air collision avoidance between multiple UAVs and for

ground collision avoidance from the static urban obstacles [14]. Patel and Goulart’s

anti-hijack override system for commercial aircraft utilized a direct multiple shooting

optimal control method that was demonstrated in simulation and generated feasible

obstacle avoidance trajectories with computation times sufficiently fast for real-time

implementation [67, 68]. The cost functional used was a minimum deviation from

a reference trajectory. The purpose of their system was to prevent an aircraft that

was in the hands of a hostile pilot from being flown into “buildings and other crit-

ical infrastructure and landmarks [68].” Patel and Goulart’s research defined three

trigger mechanisms to calculate when an override should be commanded and calcu-

lated the optimal trajectory to be flown [67]. The proposed Optimal Auto GCAS

research differs from previous work in these ways: 1) the military mission of the air-

craft requires low-level flying in close proximity to terrain, 2) the Auto GCAS must be

nuisance-free which requires the recovery to be timely and aggressive (denoting a ‘last-

second’ recovery) [80], and 3) the optimal control technique used is Legendre Gauss

Radau (LGR) direct orthogonal collocation using the pseudospectral method [74].

The military mission is an important distinction. In a majority of civilian scenarios,

a last-second aggressive automatic recovery would be an unacceptable risk. However,

for Auto GCAS on a military platform, a last-second aggressive recovery is essential

in order to be nuisance-free and still accomplish the operational mission.
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Applying optimal control to obstacle or terrain avoidance is not new, but mapping

the last-second timely and aggressive recovery to an optimal control formulation is

new. F-16 Auto GCAS does address the last-second issue through its aggressive

and timely recovery but it is a pre-planned recovery vice an optimal recovery and

was not designed for climb-limited or g-limited aircraft. Thus, there is no existing

operational Auto GCAS system that uses optimal control for nuisance-free operation

via a last-second recovery. This research seeks to address that gap.

2.2.7 Real-Time Optimal Control.

For an operational system, the optimal control calculations will have to be done

onboard and in real-time. Current research demonstrates that direct optimal control

methods show promise for real-time implementation. Patel and Goulart conducted

online optimization simulations using a Boeing 767 simulator and the nonlinear pro-

gramming (NLP) solver IPOPT [12] to generate their obstacle avoidance trajectories

in 2010-2011 [67, 68]. In 2008, Bollino and Lewis used DIDO [77] and the NLP solver

SNOPT [39] to generate min-time trajectories for multiple UAVs flying through an

urban environment and even incorporated real-time automatic route re-planning to

account for a new pop-up target to intercept [15, 14]. Two other recent examples

of real-time optimal control programs that have been demonstrated in flight test are

Ross, Cobb, and Baker’s quadrotor optimal control research at AFIT in 2011 [78]

and Geiger et al.’s real-time UAV direct collocation path planner at the Pennsylvania

State University in 2007 [37, 38]. AFIT’s quadrotor research solved a bearing-only

trajectory planning problem to autonomously land a quadrotor on a wire [78]. Penn

State’s UAV research planned a path to maximize surveillance time of a target by a

camera onboard a UAV [37, 38].

Although the real-time implementation aspect is not the focus of this research, it
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is worthwhile to note that it is feasible that the algorithms being formulated for this

research could be employed onboard a manned aircraft in the near future.

This research proposes an optimal control solution technique applied to the Auto

GCAS problem, and therefore, some background in the optimal control problem for-

mulation is provided in the next section.

2.3 Optimal Control

Now that a survey of collision avoidance methods and a literature review of oper-

ational manual and automatic ground collision avoidance systems has been presented

along with research in optimal control solutions for collision avoidance, it is necessary

to provide background information on optimal control which this research uses as the

solution technique.

2.3.1 General Form of the Optimal Control Problem.

The goal of an optimal control problem is to find a control u∗ ∈ A “which causes

the system ẋ = f (x (t) ,u (t) , t) to follow a trajectory x∗ ∈ X that minimizes the

performance measure J” where A is the admissible set of control inputs and X is

the admissible set of state values [53]. The general optimal control problem is stated

as [53] [69]

Minimize J
u∈A

= φ (x (t0) , t0,x (tf ) , tf ) +

tf∫
t0

L (x (t) ,u (t) , t)dt (1)

Subject to:

ẋ = f (x (t) ,u (t) , t) (EOM/dynamic constraints) (2)

ψ (x (t0) , t0,x (tf ) , tf ) = 0 (boundary constraints) (3)

C(x(t),u (t) , t) ≤ 0 (algebraic path constraints) (4)
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where φ is the Mayer term that contains the terminal penalty (also known as the final

cost), L is the Lagrangian term that contains the integral cost (also known as the

running cost or along the way cost), ẋ represents the equations of motion or dynamics,

x represents the states, u is the control, ψ represents the boundary constraints, and

C represents the algebraic path constraints.

2.3.2 Performance Measures.

A performance measure, or performance index, is what is used to evaluate the

performance of the system of interest [53]. The goal is to choose an optimal control,

u∗ that will minimize (or maximize) the performance measure. In a military scenario

with ground-to-air threats, an optimal control problem could be to fly an aircraft from

the home base, take reconnaissance photos and videos of a certain point in enemy

territory and then return home. The performance index for the aircraft’s flight path

could be to maximize the distance away from enemy ground radars and surface-to-

air missile sites. A performance measure is represented by the cost functional, J , in

Equation (1). Five performance measures for some common optimal control problems

are described here. Constraints exist for each that are specific to the user’s goal, but

for now only the different possible forms of the cost functional are being discussed in

this chapter. The next sections will describe the following five potential performance

measures: 1) minimize time, 2) minimize terminal state, 3) minimize control effort,

4) minimize deviation from a path with minimum control effort, and 5) minimize

deviation from the origin with minimum control effort [53]. Chapter III will present

the cost functionals employed in this research.
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2.3.2.1 Minimize Time.

Minimum time solutions are useful for a variety of applications. For example, a

min time solution makes sense for navigational applications where the vehicle needs

to move to another location or state in the quickest time. Using our scenario of an

aircraft flying through a high-threat area, minimum time could be a viable perfor-

mance measure such that the time the aircraft is vulnerable to threats is minimized.

The minimum time performance measure is

J =

tf∫
t0

1dt where [φ = 0, L = 1]

or equivalently,

J = tf − t0 where [φ = tf − t0, L = 0] .

Note that in the first formulation of the min time problem, there is only a Lagrangian

term, while in the second formulation there is only a Mayer term. The min time

formulation is a simple example to show that Lagrangian terms, once integrated, can

become Mayer terms.

2.3.2.2 Minimize Terminal State.

The goal of this performance measure is to “minimize the deviation of the final

state of a system from its desired value r(tf ) [53].” Kirk also refers to this as a

Terminal Control problem. An example is a weapon that must arrive and detonate

at a specific final (x, y, z) location in space. The deviation from this final location

is the ‘final cost,’ but where the weapon goes along the way is not important. The
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performance measure to minimize the terminal state is

J = [x(tf )− r(tf )]
TH[x(tf )− r(tf )] where H ≥ 0

where H is called the final state weighting matrix. H is a real symmetric positive

semi-definite n× n weighting matrix, where n is the number of states, i.e. x, r ∈ Rn.

The semi-definite requirement on H permits penalizing some but not all elements

in [x(tf ) − r(tf )]. Even though some states can have a zero weighting, at least one

of the states must be weighted or else the cost functional is pointless. In the cost

functional above, there is no running cost, but a running cost can be added if desired.

For example, this performance index can also be combined with a running cost of min

control effort as described next. This performance index can also be combined with

a running cost of min control effort as described next.

2.3.2.3 Minimize Control Effort.

The goal of min control is “to transfer a system from an arbitrary initial state

x(to) = x0 to a specified target set with a minimum expenditure of control effort” [53].

If there are many controls, such as in this research where aircraft bank angle φ and

load factor Nz are all possible controls, then u is a vector. The min control effort

performance measure is

J =

tf∫
t0

(
uT (t)Ru(t)

)
dt where R > 0

where R is called the control weighting matrix and is chosen as a real symmetric

positive definite m × m weighting matrix, where m is the number of controls. R is

positive definite because if any one of the controls had a zero weighting, then that

would imply infinite control could be used which is not physically realizable. Thus, the
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positive-definiteness of R ensures that any control used in the performance measure

of a system’s optimal control problem must have a positive penalty associated with it.

Technically, R could be equal to zero but then u must be bounded in the constraint

function.

2.3.2.4 Minimize Deviation from a Path with Minimum Control

Effort.

Combining the above with a desire to minimize path deviations, creates Minimum

Deviation from a Path problems (or what Kirk also refers to as Tracking problems),

where the goal is “to maintain the system state x(t) as close as possible to the

desired state r(t) in the interval [t0, tf ]” [53]. The minimum deviation from a path

with minimum control effort performance measure is

J =

tf∫
t0

(
(x(t)− r(t))T Q (x(t)− r(t)) + uT (t)Ru(t)

)
dt, Q ≥ 0,R > 0

where Q is called the state weighting matrix and is a real symmetric positive semi-

definite n× n weighting matrix and with R as previously defined. The semi-definite

requirement on Q means not all elements in [x(t)− r(t)] must be penalized.

This is by no means an exhaustive list of performance measures, but it does repre-

sent the most commonly used ones. This research desires an optimal control solution,

therefore the question of which J is ‘best’ for Auto GCAS needs to be answered.

Chapter III will develop the use and/or modification of these cost functionals as

appropriate for Auto GCAS.
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2.3.3 Solution Methods.

2.3.3.1 Direct vs. Indirect Approaches.

With the indirect method, the optimality conditions are first applied in order to

arrive at a Hamilton Boundary Value Problem (HBVP) which is more difficult to

solve. The constrained problem is then turned into an unconstrained problem and

discretized. In the direct method, first the problem is discretized using pseudospectral

methods. Thus, the problem is now transcribed to a parameter optimization problem.

The constrained problem is then turned into an unconstrained problem, and handed

off to an NLP solver for optimization. It is named direct because the method is to

directly solve for the optimal control u∗ first then to solve for the co-states λ, while

with the indirect method, one solves for the co-states λ first and then solves for the

optimal control u∗. Hence, the control u∗ is solved for indirectly.

According to the Gauss Pseudospectral Costate Mapping Theorem, “The Karush-

Kuhn-Tucker (KKT) conditions of the NLP are exactly equivalent to the discretized

form of the continuous first-order necessary conditions of the continuous Bolza prob-

lem when using the Gauss psuedospectral discretization” [75]. The solution path for

both the direct and indirect methods is shown in Figure 10 [75] with the Costate

Mapping depicted in the bottom right-hand corner.
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Figure 10. Equivalence of Indirect and Direct Forms Using the Gauss Pseudospectral
Discretization [75]

According to Rao et al., “One of the key features of the Gauss pseudospectral method

is the ability to map the KKT multipliers of the NLP to the costates of the continuous-

time optimal control problem” [75].

Benson states that “The discretization of the optimal control problem at Gauss

points has no defects, so that the direct solution is exactly equivalent to the indirect

solution. This result means that the operations of discretization and optimization

commute, and the solution is the same whether you discretize then optimize, or

optimize then discretize” [9]. In the direct method we discretize then optimize, while

with the indirect method, we optimize then discretize. Detailed discussions and proofs

regarding the direct and indirect methods can be found in Benson’s and Huntington’s

research [9, 47] as well as the Gauss Pseudospectral Optimization Program (PSCOL)

manual [75].
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2.3.3.2 Pseudospectral Method.

In recent years direct transcription methods have become very popular in solving

complex optimal control problems in many areas such as aerospace, chemical, and

medical fields. According to Huntington, these direct orthogonal collocation (DOC)

methods are more commonly known as pseudospectral methods in the aerospace

community [47]. The solution method used for this research is the pseudospectral

method (PSM), also referred to as the Variable-Order Gaussian Quadrature Colloca-

tion Method by Rao [69]. The PSM and the accompanying Legendre-Gauss-Radau

collocation rule which will be used for this research are summarized here.

The PSM is a direct method for solving optimal control problems using Gaussian

quadrature. The general formulation of the optimal control problem was given in

Equations (1) to (4) in Section 2.3.1. An optimal control problem has two main tasks

that must be solved. One task is to evaluate the integral in the cost functional, and the

second is to solve the differential state equations, i.e. dynamic constraints. The PSM

is a numerical method that solves partial differential equations. PSM uses Gaussian

quadrature to perform the integration and enforces the differential constraints to be

satisfied at the collocation points.

Collocation methods are chosen because they are computationally efficient and ro-

bust to initial guesses [73]. As shown by Rao, using collocation leads to a large sparse

nonlinear programming problem (NLP) [73]. The Lagrange interpolating polynomials

are chosen as the basis functions used to approximate the states x and controls u.

Lagrange polynomials also have a special quality called the Isolation Property, leading

to sparse matrix equations. This sparsity pattern makes the iteration method very

efficient. Current NLP solvers were designed to take advantage of this sparsity which

is why using collocation methods leads to computationally efficient solutions [73].

In order to perform the first task of numerically evaluating the integral in the
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cost functional J , Legendre-Gaussian quadrature is used where quadrature points are

chosen as the roots of the Legendre polynomials. In order to use the roots of the

Legendre polynomials (which are defined on the interval [−1, 1]), an affine transfor-

mation must be done from the time domain, where t ∈ [t0, tf ] to the tau domain,

where τ ∈ [−1, 1] [48]

τ =
2t

tf − t0
− tf + t0

tf − t0
. (5)

Taking the derivative of Equation (5),

dτ

dt
=

2

tf − t0
(6)

which can be rearranged

dt

dτ
=
tf − t0

2
(7)

or equivalently

dt =
1

2
(tf − t0)dτ. (8)

There are three main collocation methods which are the Legendre-Gauss (LG)

method, the Legendre-Gauss-Radau (LGR) method, and the Legendre-Gauss-Lobatto

(LGL) method. Figure 11 shows a graphical example of how collocation points and

endpoints (if applicable) for each of the three methods are placed [73]. Note that in

all methods the Gauss collocation points are interior to τ ∈ [−1, 1] and dense near

the endpoints.
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Figure 11. Schematic of Gaussian Quadrature Points [73]

In Figure 11, the blue squares indicate the LG method spacing which includes

the collocation points strictly on the open interval τ ∈ (−1, 1), and therefore does

not include either endpoint. The red diamonds show the LGR method which is on

the half-open interval τ ∈ [−1, 1) which includes the initial point plus the interior

collocation points, while the green diamonds are simply the ‘Flipped LGR’ which

is on the half-open interval τ ∈ (−1, 1] where the final point is included vice the

initial point. Finally, the purple triangles represent the LGL method which is on the

closed interval τ ∈ [−1, 1] and hence includes the interior collocation points plus both

endpoints [73].

All three of these Gaussian quadrature methods are extremely accurate [48, 73].

Accuracy is defined as the highest degree polynomial that can be integrated exactly.

LG quadrature can exactly integrate a polynomial of degree 2n-1, where n is the

number of collocation points. For example, for n = 2, LG quadrature will be accurate

for cubics, and for n = 4 it would be accurate for polynomials of degree 7 or less. LGR

quadrature can exactly integrate a polynomial of degree 2n-2, and LGL quadrature
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can exactly integrate a polynomial of degree 2n-3.

While numerous methods exist in the literature for numerical integration, the

LGR integration rule is used for this research because it is considered the best way

to incorporate an initial condition. For problems where the initial state x0 is speci-

fied such as in the Auto GCAS problem where the initial aircraft condition (states)

is known, the LGR method works well. To accurately evaluate the integral using

the LGR rule, only the values of the states x and the control u are needed at the

quadrature points in τ . These states x and the controls u at the τ quadrature points

represent the unknowns in the transcribed NLP problem.

The second task in solving the optimal control problem is solving the continuous

differential state equations. Due to the computational burden of solving a continuous-

time problem numerically, the continuous problem is transformed into a discrete ap-

proximation. Therefore, the control u and states x need to be discretized. The un-

known functions are approximated as linear combinations of orthogonal polynomials.

The functions are approximated using orthogonal polynomials because polynomials

are easy to numerically integrate and differentiate. Taking advantage of the Isolation

Property of Lagrange polynomials, a Lagrange Interpolating Polynomial is used as

the approximating function and the state equations (dynamics) are integrated to get

discretized values of the states. The state vector x is now a discretized equation, that

is, x is a function of the control vector u sampled at our collocation points.

The cost functional is evaluated using discrete values for states x and control u,

and the constraints are static instead of dynamic ones. The PSM produces exact

results at special points, called the nodes or collocation points. Since the discrete

solution at the collocation points is known to be exact, a continuous solution can

be obtained by interpolating between them. The final goal is still to solve for the

optimal control u∗(t) that will minimize the cost functional J , but the problem has
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been transformed into a static optimization problem that can be solved with a non-

linear programming (NLP) solver like SNOPT [39] or IPOPT [12]. For this research,

a general-purpose MatLab software program called GPOPS-II from the University

of Florida [74] is used to solve the optimal control problems. GPOPS-II can uti-

lize multiple NLP solvers, including quasi-Newton (first derivative) solvers such as

SNOPT [39] and full Newton (second derivative) solvers such as IPOPT [12] and

KNITRO [20, 69]. IPOPT is the NLP solver used for the research herein.

2.4 3-D Aircraft Model

To achieve the research objectives, a full 3-D environment which includes an air-

craft model and digital terrain elevation data (DTED) are needed.

A nonlinear three degree-of-freedom (3-DOF) point mass model is used in this

research similar to that of Ragunthan [72], Bicchi [11], and Smith [81]. This is a

common dynamics model used in the literature for aircraft simulation when both

computational speed and realistic flight dynamics are important, but when a partic-

ular airframe is not specified/needed. The 3-DOF point mass model EOM are shown

in Equations (9) to (14) where x, y, and z are aircraft position, V is the airspeed of

the aircraft, γ is flight path angle, χ is heading angle, and vw is wind speed in the

x, y, and z directions. Winds are defined as the direction they are coming from, for

example, vwz > 0 for an updraft. In addition, T is thrust, L is lift, D is drag, M is
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mass, g is the acceleration of gravity, α is angle of attack, and µ is bank angle.

ẋ = V cos γ cosχ+ vwx (9)

ẏ = V cos γ sinχ+ vwy (10)

ż = V sin γ + vwz (11)

V̇ =
T cosα−D −Mg sin γ

M
(12)

γ̇ =
(T sinα + L) cosµ−Mg cos γ

MV
(13)

χ̇ =
(T sinα + L) sinµ

MV cos γ
. (14)

A further simplification is made using 3-DOF approximations to eliminate T , D,

M , g, and α. Velocity is assumed to be constant due to the relatively short duration

of an Auto GCAS recovery (a few seconds), resulting in

T cosα−D = Mg sin γ. (15)

Normal acceleration (or load factor) Nz is defined in the velocity-axis frame, resulting

in

MNz = T sinα + L. (16)

Substituting Equations (15) and (16) into Equations (12)-(14), eliminates Equa-

tion (12) and simplifies Equations (13) and (14). Hence, the simplified 3-DOF point
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mass model equations of motion used for this research are

ẋ = V cos γ cosχ+ vwx (17)

ẏ = V cos γ sinχ+ vwy (18)

ż = V sin γ + vwz (19)

γ̇ =
Nz cosµ− g cos γ

V
(20)

χ̇ =
Nz sinµ

V cos γ
. (21)

where the five states x are defined as aircraft x-position, y-position, z-position, flight

path angle γ, and heading angle χ. The two controls u are µ (bank angle) and Nz

(normal acceleration or load factor).

x =



x

y

z

γ

χ


and u =

 µ

Nz

 (22)

2.5 3-D Digital Terrain Model

SRTM DTED provides the terrain height at each lat/lon point in the specified

grid and an accompanying reference vector that contains three descriptive elements:

cells/degree, the Northern latitude corner, and the Western longitude corner. A cell

is defined as the width between two SRTM DTED posts. Please refer to Appendix B

on how to work with SRTM DTED data for this research.
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2.6 East-North-Up Reference Frame

The aircraft states must be propagated in a reference frame that is compatible

with the aircraft equations of motion. A common reference frame in the literature

used for aircraft simulation is the East-North-Up (ENU) frame, where East is the x-

axis, North is the y-axis, and Up is the z-axis. For navigation purposes, “(east, north,

up) coordinates are essential in determining the line of sight for terrain data given as

latitude, longitude and height, such as digital terrain elevation data (DTED)” [27, 91].

The ENU reference frame overlay is shown in Figure 12.

Figure 12. East-North-Up Reference Frame Overlay [76]

In the z-axis (Up) of the ENU frame, aircraft altitude and terrain heights are

shown in positive numbers which is desirable for an Auto GCAS system. Therefore,

the ENU frame is most appropriate for this research.

2.7 Summary

This chapter presented a survey of existing CDR methods for collision avoidance,

a literature review of manual and automatic ground collision avoidance systems, the

general form of the optimal control problem, the 3-D aircraft model, the 3-D digital

terrain model, and the reference frame used for this research. Next, Chapter III lays

out how the optimal control approach will be applied to the Auto GCAS problem.
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III. Methodology

Chapter I motivated the need to solve the problem of Controlled Flight Into Ter-

rain (CFIT) and showed that the best way to accomplish any further reduction in

CFIT mishaps is to implement an automatic solution such as the Automatic Ground

Collision Avoidance System (Auto GCAS). The F-16 Auto GCAS and requirements

were introduced, and then the research objectives were outlined: 1) develop an op-

timal control technique to calculate an Auto GCAS recovery trajectory for aircraft

with lower climb performance, and 2) conduct a limited comparison of the Optimal

Auto GCAS to an Auto GCAS algorithm with pre-planned trajectories.

Chapter II described a taxonomy with which to classify air and ground collision

avoidance methods and provided a literature review of pertinent manual and auto-

matic ground collision avoidance systems. The literature review identified a gap and

showed that optimal control solution methods have not been applied to the Auto

GCAS problem with a last-second recovery. This chapter develops an optimal control

method as a solution technique for implementing Auto GCAS on aircraft. As a pre-

cursor to the research methodology, a description of the general form of the optimal

control problem formulation was presented in Chapter II along with example perfor-

mance measures. Chapter II concluded with an explanation of the aircraft model,

digital terrain model, and reference frame.

In this chapter, the specific methodology of applying optimal control theory to

the Auto GCAS problem is explained. First, the Auto GCAS design requirements on

the automatic recovery maneuver are explained. Next, two different optimal control

formulations of the Auto GCAS problem proposed for this research are discussed.

Finally, results for both optimal control formulations are presented for a 2-D example

problem, enabling a direct comparison between the two formulations.
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3.1 Definition of Aggressive and Timely Requirements in Relation to

Nuisance Warnings

Conceptually, the aggressive and timely requirements are described below, fol-

lowed by mathematical definitions in Section 3.2. In order to reduce nuisances and

not interfere with the military mission, an Auto GCAS recovery maneuver must be

both aggressive and timely [80, 87]. In Figure 13 below, the red dotted line shows

a user-defined keep-out zone (or buffer) that is added to the digital terrain. The

blue dashed line represents an aggressive but not timely recovery maneuver, while

the green dashed line represents a timely but not aggressive recovery maneuver [80].

The solid orange line represents a recovery that is both aggressive and timely and

hence meets both Auto GCAS requirements [80].

Figure 13. Conceptual Diagram of Aggressive, Timely, and Aggressive and Timely
Recoveries [80]

If an automatic recovery is aggressive but commanded too early, it can be judged

as a nuisance by a situationally aware pilot. If an automatic recovery is timely but

is not aggressive, it can likewise be judged as a nuisance by a situationally aware

pilot [80, 87]. Hence, an Auto GCAS recovery maneuver must be both aggressive and

timely [80, 87].

The current F-16 Auto GCAS recovery was designed to meet both requirements.
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F-16 Auto GCAS constantly calculates a single predictive trajectory with a wings-

level 5-g pull-up (making it aggressive like the blue dashed line) with emphasis on

executing the maneuver after the 1.5 sec Time Available threshold when an aware

pilot would recover (making it timely and aggressive like the solid orange line). For

this research, two optimal control solution techniques have been formulated to create

an aggressive and timely Auto GCAS recovery for climb- and g-limited aircraft.

While Figure 13 shows a spatial view of the problem, the times related to each

event in any recovery must be defined. Figure 14 provides a generic timeline which

is applicable to both Auto GCAS optimal control solution techniques. The timeline

shown assumes there is terrain that must be avoided within the time horizon used

by the optimizer. The optimizer runs continuously from takeoff time tStart Mission to

landing time tEnd Mission. The beginning of the time horizon is t0 and the end of the

time horizon is tf , while ttrigger is defined as the start of the auto recovery and tCPA

is the time at the closest point of approach (CPA) to terrain. The trigger time ttrigger

and tCPA both lie in the interval [t0, tf ]. The Auto GCAS recovery shown in red is

commanded by the autopilot for t ∈ [ttrigger, tCPA), and control is given back to the

pilot just after tCPA, once the algorithm assures that the aircraft will clear terrain.

A timely recovery is one in which ttrigger is as close to tCPA as possible while still

allowing the aircraft to clear the terrain.

Figure 14. Auto GCAS Optimal Control Maneuver Timeline

78



3.2 Mathematical Definition of Aggressive and Timely Requirements

The Auto GCAS requirements of aggressive and timely are defined mathematically

here so that these requirements can be captured in an optimal control formulation.

For aircraft, it seems natural to define aggressive as being mapped to control input.

We first define a set of functions based on aircraft state and control variables that

represent a measure of the aircraft’s ‘control state’. These functions map the physical

control inputs to the aircraft control state. For either safety or physical reasons, each

of these functions are bounded such that

Umini ≤ Ui(x(t),u(t)) ≤ Umaxi (23)

where Umini and Umaxi are user-specified limits for the ith control state constraint

(where i = 1, 2, ...n is the number of control states). Examples of a control state

constraint might be a max structural g limit on the aircraft or a min or max g

physiological limit on the pilot. Each of these limits would be a functional of the

state of the aircraft and the current aircraft control inputs. First, define aggressive

to be

Ui(x(t),u(t)) = Umaxi

or

Ui(x(t),u(t)) = Umini

 for at least one Ui, ∀ t ∈ [t0, tCPA) (24)

Here the control state Ui(x(t),u(t)) can be a functional of a combination of states and

controls. For simplicity, in this research we consider only the case where the control

state is directly mapped to a single control input. For example, a min or max control

surface deflection limit that is directly mapped to a control stick input. Thus,

Ui(x(t),u(t)) = ui(t) (25)
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Using Equation (25) and aggressive as defined in Equation (24), Equations (23)

and (24) reduce to Equation (26)

ui(t) = umaxi

or

ui(t) = umini

 for at least one control ui, ∀ t ∈ [t0, tCPA). (26)

The time at the closest point of approach tCPA lies in the interval [t0, tf ] and rep-

resents the point in time where the aircraft is closest (in the 2-norm sense) to the

terrain15 during the optimal recovery maneuver. The control space can be thought of

as a hyper-cube, where each face represents the umax or umin for the corresponding

control u(t). Hence, an aggressive control would be one that lies on one or more of the

faces of the hyper-cube. For an aircraft scenario with two controls, the hyper-cube is

reduced to a square, where each edge represents an aggressive control.

Note that i may change during the interval t ∈ [t0, tCPA). For example, the

optimal control solution may result in two controls at their max limits everywhere in

the interval or may result in one control at its max limit for the first part of the time

interval and another control at its max limit for the second part of the interval.

Next, the timely requirement must be defined. Over a short period of time [t0, tf ]

it is reasonable to assume that the aircraft is flying at a relatively constant velocity.

Therefore, time maps to distance for a fixed velocity. Define a distance threshold

(terrain buffer or keep-out zone) dthreshold which is the min allowable distance to

terrain. Based on this, for a given control u(t), a timely aircraft trajectory is a ‘last-

second’ recovery maneuver Xac(t,u(t)) that reaches but does not violate the distance

15In the 2-D case, terrain is defined as the closest digital terrain post, while in the 3-D case terrain
means a continuous surface approximation of digital terrain which will be explained in detail in
Chapter IV.
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threshold. Define a timely trajectory Xac as

min
t∈[t0,tf ]

||Xac(t,u(t))−XTerrain||2 = dthreshold (27)

where the trajectory Xac is defined as the 3-D vector position of the aircraft, XTerrain

is defined as the 3-D location of the terrain which is reachable in the timespan

t ∈ [t0, tf ], and dthreshold is a scalar user-defined terrain buffer. For the work de-

veloped herein, dthreshold was set to 350 feet (as explained in Chapter V Section 5.5)

representing a buffer around terrain that cannot be encroached. The minimum of

the 2-norm ||Xac(t)−XTerrain||2 is the closest point of approach (CPA) between the

aircraft and the terrain in the local map16. It is assumed that there exists terrain

that must be avoided within the time horizon of the optimizer. Hence, it is necessary

to perform an avoidance maneuver. Thus, a timely maneuver is one that is executed

such that there exists a point in time, denoted tCPA, along the trajectory Xac where

equality is reached in Equation (27). It follows that t0 ≤ tCPA ≤ tf , and if the ma-

neuver were executed before t0, the min of Equation (27) would exceed dthreshold and

hence would not be considered timely.

The goal is to trigger the auto recovery when it meets both the aggressive and

timely requirements. Note that not all aggressive controls result in timely trajectories.

Figure 15 depicts what an aggressive control looks like for a trajectory that is not

timely for an aircraft with one control in a single obstacle scenario.

16The local map is the immediate vicinity around the aircraft as defined by the user and based on
the aircraft mission.
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Figure 15. An Aggressive Control Resulting in a Trajectory that is Not Timely

Conversely, a control that is not aggressive can still result in a timely trajectory.

Figure 16 depicts what a control that is not aggressive looks like for a timely trajectory

for an aircraft with one control and a scenario with a single obstacle.

Figure 16. A Control that is Not Aggressive Resulting in a Timely Trajectory

The triggers for the auto recovery to be commanded are that both the aggres-

sive and timely requirements are met simultaneously. The next section more fully

illustrates a commanded auto recovery that is both aggressive and timely.

3.3 Mapping Aggressive and Timely Requirements to the Optimal Con-

trol Formulation

Now that the aggressive and timely requirements of the Auto GCAS recovery

have been defined mathematically, these requirements need to be incorporated in an

optimal control formulation. The question is how to map the aggressive and timely
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requirements to the optimal control formulation? For most problems, the engineer

must accept the dynamics and boundary constraints that are inherent to the problem.

However, the art of formulating an optimal control problem is in how the cost func-

tional J and the path constraints C are designed. Further, for an iterative problem

such as Auto GCAS, choosing the point at which the automatic recovery is triggered

is crucial. For this optimal Auto GCAS research, aggressive and timely requirements

have been purposefully mapped in two different ways to the cost functional J , the

path constraints C, and the trigger point for the automatic recovery.

Each of these requirements can be put either in the cost functional, in the path

constraints, or (in the case of an autonomous algorithm) in the trigger logic for the

automatic recovery via the autopilot. Table 6 shows how these two Auto GCAS

requirements were mapped to develop two distinct optimal control formulations, one

referred to as Max Distance and one as Min Control.

Table 6. Mapping of Aggressive and Timely requirements to J , C, and Trigger

Method Combination of Cost Functional J Trigger for
Name and Path Constraints C Auto Recovery

Max Distance Aggressive Timely
Min Control Timely Aggressive

Each method is named based on the form of the cost functional J . It is im-

portant to remember the iterative nature of the Auto GCAS problem where a new

optimal control solution is calculated at each time step but the optimal control is not

commanded until the trigger criteria have been met. The two graphics in Figure 17

illustrate the iterative nature of Auto GCAS and depict what the Max Distance and

Min Control optimal control formulations represent physically. As in Figure 13, the

blue dashed lines represent an aggressive recovery, the green dashed lines represent

a timely recovery, while the solid orange lines represent the commanded automatic

recovery that is both aggressive and timely.
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(a)

(b)

Figure 17. Two Optimal Control Approaches to Auto GCAS: a) Max Distance and b)
Min Control

Now that we have defined the aggressive and timely requirements, the next section

shows how to incorporate these requirements into an optimal control formulation.

3.4 Optimal Control Formulations for Auto GCAS

This section first develops the specifics of the two optimal control formulations

from Table 6 for the general case, followed by a specific 2-D example.
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3.4.1 Max Distance with a Timely Trigger.

In the Max Distance with a Timely Trigger formulation (also referred to as Max

Distance for brevity), the Auto GCAS problem is posed as a maximization problem.

Note that the Max Distance formulation always admits an aggressive maneuver. The

goal is to find the aircraft trajectory that produces the maximum distance away (2-

norm) from the terrain (represented as DTED posts) at the CPA with aggressive

constraints on controls. The combination of the Max Distance performance measure

J and the constraint on control

umini
≤ ui(t) ≤ umaxi (28)

admits an optimal solution that meets the aggressive requirement.

Define Xac(t) as the 3-D aircraft position and XTerrain as the 3-D location of

the DTED posts in the local map. Originally, the intent was to formulate the Max

Distance cost functional as a max min problem with the goal of maximizing distance

away from the closest terrain to the aircraft such that

Maximize:
u∈A

J = min ||Xac(t)−XTerrain||22 (29)

where A is the set of admissible controls. However, max and min functions are

not well-conditioned for a nonlinear programming (NLP) solver because they do not

have smooth gradients. As can be seen in the right hand side of Equation (29), the

minimum can occur at a different aircraft trajectory point and/or at a different DTED

post at each iteration, which results in the non-smooth gradient.

To avoid this, a surrogate objective functional formulation was created which has

continuous gradients which are required for use in the NLP solver. Mathematically,

maximizing the integral of the distance is the same as maximizing the distance to
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the closest terrain point as long as the function Xac(t) is smooth. Hence, the Max

Distance optimal control problem is formulated to find the optimal control u∗(t) ∈ A

that maximizes the cost functional

Maximize:
u∈A

J =

∫ tf

t0

||Xac(t)−XTerrain||22 dt (30)

subject to the dynamic constraints which are the aircraft equations of motion,

ẋ = f(x,u, t) (31)

with control inputs u(t) and with boundary conditions Ψ,

X0 = specified (initial conditions) (32a)

Xf = free (final conditions) (32b)

t0 = specified (current time) (32c)

tf = specified (fixed end time of predicted trajectory) (32d)

and the path constraint C on control (making it aggressive) is defined in Equa-

tion (28), where tCPA lies in the interval [t0, tf ].

To ensure the timely requirement is met, the automatic recovery trigger occurs

when the CPA of the optimal trajectory X∗ac to the closest terrain in the local map

is equal to the keep-out zone, dthreshold,

min
t∈[t0,tf ]

||X∗ac(t)−XTerrain||2 = dthreshold. (33)

Algorithm 1 shows the decision process for the Max Distance formulation. Note

that this algorithm is an outer-loop method that sends a command to the inner loop
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autopilot to execute the optimal u∗ Auto GCAS recovery.

Algorithm 1 : Max Distance with a Timely Trigger Algorithm

Load digital terrain
Obtain current aircraft conditions
Provide initial guess of control, state, and time vectors u,x, and t (Cold start)
for t0 : ∆t : tf for end of mission do

Obtain current aircraft conditions
Optimizer:

Find u∗ that maximizes Max Distance cost functional J (Equation (30))
Satisfy dynamic constraints ẋ (Equation (31))
Satisfy boundary constraints Ψ (Equation (32))
Satisfy algebraic path constraints C (Equation (28))

Output: discretized u∗,x∗, and CPA
if CPA = dthreshold (Equation (33)) then

Command Auto GCAS Recovery (Autopilot) using previous u∗

Once clearance of terrain is assured, return control to pilot
end
Set sol’n of u∗ and x∗ as new initial guess of control & state vectors (Warm start)

end
Result: Optimal Auto GCAS Recovery triggered when CPA = dthreshold

3.4.2 Min Control with an Aggressive Trigger.

In the Min Control with an Aggressive Trigger formulation (also referred to as Min

Control), the Auto GCAS problem is formulated to find the optimal control u∗(t) in

the set of admissible controls A that minimizes the cost functional

Minimize:
u∈A

J =

∫ tf

t0

uT (t)Ru(t) dt (34)

subject to the same dynamic constraints ẋ as for Max Distance in Equation (31), with

control inputs u(t) and where the boundary conditions Ψ are the same as shown in

Equation (32), and the path constraint C which keeps the aircraft path clear of a
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keep-out zone around the DTED posts

||Xac(t)−XTerrain||2 ≥ dthreshold. (35)

To ensure the aggressive requirement is met, the automatic recovery is only triggered

when

ui(t) = umaxi

or

ui(t) = umini

 for at least one control ui, ∀ t ∈ [t0, tCPA) (36)

is satisfied. The combination of the cost functional J and the path constraint C

makes this formulation timely. In order to minimize the cost functional J and satisfy

the constraint C on aircraft path, the optimal control u∗ is the min control effort re-

quired to keep the aircraft on the boundary of the keep-out zone defined by dthreshold,

thus ensuring timeliness. The Auto GCAS recovery is triggered when the min control

solution equals the allowable control limit (either a max or a min), making the recov-

ery aggressive. Thus, upon trigger, the Min Control formulation, like Max Distance,

meets both the mission requirements of being aggressive and timely.

Algorithm 2 shows the Min Control formulation decision process.
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Algorithm 2 : Min Control with an Aggressive Trigger Algorithm

Load digital terrain
Obtain current aircraft conditions
Provide initial guess of control, state, and time vectors u,x, and t (Cold start)
for t0 : ∆t : tf for end of mission do

Obtain current aircraft conditions
Optimizer:

Find u∗ that minimizes Min Control cost functional J (Equation (34))
Satisfy dynamic constraints ẋ (Equation (31))
Satisfy boundary constraints Ψ (Equation (32))
Satisfy algebraic path constraints C (Equation (35))

Output: discretized u∗,x∗, and CPA
if u∗i (t) = umini

or u∗i (t) = umaxi (Equation (36)) then
Command Auto GCAS Recovery (Autopilot) using previous u∗

Once clearance of terrain is assured, return control to pilot
end
Set sol’n of u∗ and x∗ as new initial guess of control & state vectors (Warm start)

end
Result: Optimal Auto GCAS Recovery triggered when Equation (36) is satisfied

Based on the discussion, we now clarify Table 6 as shown in Table 7. Table 7

is a more detailed summary of the mapping of the aggressive and timely mission

requirements to the cost functional J , path constraints C, and the trigger point of

the Auto GCAS recovery for the general case.

Table 7. Mapping of Aggressive and Timely to J , C, and Trigger (Detailed)

Method Combination of Cost Functional J Trigger Automatic
Name and Path Constraints C Recovery When

Max Distance Max Distance and CPA = dthreshold
Umini

≤ Ui(t) ≤ Umaxi
⇒ Aggressive ⇒ Timely

Min Control Min Control and CPA ≥ dthreshold Ui(t) = Umaxi or Ui(t) = Umini
16

⇒ Timely ⇒ Aggressive
16for at least one control Ui ∀ t ∈ [t0, tCPA), where CPA is the closest point of approach

Hence, the Max Distance formulation always admits aggressive solutions but trig-

gering the Auto GCAS recovery when the closest point of approach of X∗ac to the clos-
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est DTED post is equal to dthreshold makes the solution timely. Conversely, the Min

Control formulation always admits timely solutions but triggering the Auto GCAS

recovery when the optimal control vector satisfies Equation (36) makes the solution

aggressive.

3.5 2-D Example

Initially a 2-D optimal control model was created to compare the two formulations

in a simple scenario. The 2-D model considers a 3-state aircraft (x, y, and θ) with

a single control u = θ̇ in a single obstacle scenario. Constant velocity and constant

altitude are assumed for the 2-D scenario.

3.5.1 Max Distance with a Timely Trigger.

In the Max Distance with a Timely Trigger formulation, the combination of the

Max Distance performance measure J and the constraint on control, umin ≤ u(t) ≤

umax, admits an optimal solution that meets the aggressive mission requirement. De-

fine

Xac(t) =

 x(t)

y(t)

 and XTerrain =

 xDTED

yDTED

 (37)

where Xac(t) is the aircraft position and XTerrain is the location of the closest DTED

post amongst the DTED posts in the local map. As an illustrative example, only one

obstacle (represented by one DTED post) is considered, therefore by default it is the

closest DTED post (since it is the only post). This Auto GCAS problem formulation

is posed as a Fixed Final Time, Free Final State optimal control formulation for each

iteration.
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The Auto GCAS optimal control problem is now formulated to find the optimal

control u∗(t) in the set of admissible controls A that maximizes the cost functional,

Maximize:
u∈A

J =

∫ tf

t0

||Xac(t)−XTerrain||22 dt (38)

subject to the dynamic constraints (equations of motion),

ẋ(t) = V cos θ(t) (39a)

ẏ(t) = V sin θ(t) (39b)

θ̇(t) = u(t) (39c)

where the control input u is turn rate θ̇, with the boundary conditions Ψ,

(x(t0), y(t0), θ(t0)) = (x0, y0, θ0) (40a)

t0 = specified (current time) (40b)

tf = specified (fixed end time of predicted trajectory) (40c)

and the path constraint C on control,

umin ≤ u(t) ≤ umax. (41)

Notice that this definition does admit |u(t)| = umax for t ∈ [t0, tCPA) when umin =

−umax.

To ensure the timely requirement is met, trigger the automatic recovery when

min
t∈[t0,tf ]

||X∗ac(t)−XTerrain||2 = dthreshold (42)

is satisfied, which corresponds to t = tCPA. Further, for all previous trajectories before
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the trigger, the min distance is always greater than dthreshold. The combination of the

cost functional J and the path constraint C makes this formulation aggressive. In

order to maximize the cost functional J and satisfy the constraint C on control,

the control u is driven to a limit until the flight path results in a point of closest

approach, X∗ac(tCPA), whose distance from the terrain is equal to the dthreshold value.

By triggering the Auto GCAS recovery at the point when the min point of closest

approach of the optimal aircraft trajectory passes at the buffer around the DTED

post, dthreshold, the timely requirement is met. Thus, at the trigger point the Auto

GCAS recovery meets mission requirements by being both aggressive and timely.

3.5.2 Min Control with an Aggressive Trigger.

The 2-D Auto GCAS problem can also be posed as a minimization problem for

the Min Control with an Aggressive Trigger formulation. Like the Max Distance for-

mulation, Min Control is formulated as a Fixed Final Time, Free Final State optimal

control problem for each iteration. Here the Auto GCAS problem is formulated to

find the optimal control u∗(t) in the set of admissible controls A that minimizes the

cost functional,

Minimize:
u∈A

J =

∫ tf

t0

uT (t)u(t) dt (43)

subject to the same dynamic constraints for Max Distance as shown in Equation (39),

where the control input u is turn rate θ̇, and the boundary conditions Ψ are the same

as Max Distance as shown in Equation (40), and the path constraint C which keeps

the aircraft path outside of a keep-out zone/buffer around the DTED post is

||Xac(t)−XTerrain||2 ≥ dthreshold. (44)
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To ensure the aggressive requirement is met, trigger the automatic recovery when

u(t) = umax

or

u(t) = umin

 ∀ t ∈ [t0, tCPA) (45)

is satisfied. The cost functional J and the path constraint C together make this

formulation timely. When the min control solution admitted by the optimizer equals

the allowable control limit (max or min), then Equation (45) is satisfied and the auto

recovery (now aggressive and timely) is triggered.

3.6 2-D Analytical Equivalency

Both the Max Distance and Min Control optimal control formulations admit the

same minima at trigger. To show this, the necessary conditions are derived here for

both cases. The necessary conditions are then evaluated at the trigger point of the

aggressive and timely Auto GCAS recovery to demonstrate equivalency.
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3.6.1 Necessary Conditions for Optimality for Max Distance.

Using the Max Distance optimal control formulation from Section 3.5.1, the con-

straints are adjoined to the cost functional J to form the adjoined cost functional J1

of the unconstrained optimization problem. For simplicity, a 2-D scenario with only

one obstacle is considered, represented by the coordinates of the DTED post, (xDTED,

yDTED). The cost functional of Equation (38) is changed to a minimization problem

because the optimizer is set up for minimization problems. The scalars V , xDTED,

yDTED, and umax are constants defined by the user, and s(t) is the slack variable for

the inequality constraint u2(t) ≤ u2max. Note that a symmetric control is assumed for

this 2-D example, where umin = −umax. The aircraft velocity, V , is assumed constant

due to the relatively short duration of the automatic recovery. The three states x, y,

and θ and the control u are time dependent as are the Lagrange multipliers λi and µ

and slack variable s. For simplicity the explicit use of the variable t will be dropped

for the remainder of this section.

Minimize:
u∈A

J1 =

∫ tf

t0

− (x− xDTED)2 − (y−yDTED)2 + λ1(V cosθ − ẋ) (46)

+ λ2(V sinθ − ẏ) + λ3(u− θ̇) + µ(u2 − u2max + s2) dt.
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Deriving the necessary conditions for optimality results in nine equations for nine

unknowns: x, y, θ, u, λ1, λ2, λ3, µ, and s,

Co-state equations:

∂J1
∂x

= 0⇒ λ̇1 = 2(x− xDTED) (47a)

∂J1
∂y

= 0⇒ λ̇2 = 2(y − yDTED) (47b)

∂J1
∂θ

= 0⇒ λ̇3 = λ1(V sin θ)− λ2(V cos θ) (47c)

Optimal control equation:

∂J1
∂u

= 0⇒ 2µu = −λ3 (47d)

State equations:

∂J1
∂λ1

= 0⇒ ẋ = V cos θ (47e)

∂J1
∂λ2

= 0⇒ ẏ = V sin θ (47f)

∂J1
∂λ3

= 0⇒ θ̇ = u (47g)

Slackness equation:

∂J1
∂µ

= 0⇒ u2 − u2max + s2 = 0 (47h)

Switching condition:

∂J1
∂s

= 0⇒ 2µs = 0. (47i)

For the automatic recovery to be triggered, the recovery generated must meet the

requirements of aggressive and timely. Every optimal recovery resulting from the Max

Distance formulation is aggressive by design, therefore |u(t)| = umax (based on the

assumption of a symmetric control). Upon trigger, the automatic recovery is timely

because it is only triggered when the closest point of approach of the recovery equals

dthreshold. Since |u(t)| = umax is assumed, then from the slackness equation s = 0,
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meaning the control constraint is active across the interval t ∈ [t0, tCPA). We are only

concerned with the time interval when the Auto GCAS recovery is activated, which

is the initial interval t ∈ [t0, tCPA). Just after tCPA, the control is returned back

to the pilot, hence the autopilot is not commanding the control during the interval

t ∈ [tCPA, tf ]. With s = 0, the switching condition is also satisfied and the Lagrange

multiplier µ can be arbitrary. Integrating the equations of motion yields the following

optimal solution ∀ t ∈ [t0, tCPA)

|u(t)| = umax (48a)

x(t) = x0 +
V

umax
(sin θ(t)− sin θ0) (48b)

y(t) = y0 −
V

umax
(cos θ(t)− cos θ0) (48c)

θ(t) = θ0 + (t− t0)umax. (48d)

3.6.2 Necessary Conditions for Optimality for Min Control.

The Min Control optimal control formulation from Section 3.5.2 is used. The

constraints are adjoined to the Min Control cost functional J of Equation (43) to

form an unconstrained optimization problem with the adjoined cost functional J2.

The scalar dthreshold represents the keep-out zone around the DTED post and is a

constant defined by the user, and s̃ is the slack variable for the inequality constraint

dthreshold ≤
√

(x(t)− xDTED)2 + (y(t)− yDTED)2. A tilde is used here over the La-

grange multipliers and slack variable of the Min Control formulation to show that

they are not identical to those of the Max Distance formulation. The adjoined cost
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functional J2 is

Minimize:
u∈A

J2 =

∫ tf

t0

u2 + λ̃1(V cosθ − ẋ) + λ̃2(V sinθ − ẏ) + λ̃3(u− θ̇) (49)

+ µ̃(d2threshold − (x− xDTED)2 − (y−yDTED)2 + s̃2) dt.

Deriving the necessary conditions for optimality results in nine equations for nine

unknowns: x, y, θ, u, λ̃1, λ̃2, λ̃3, µ̃, and s̃,

Co-state equations:

∂J2
∂x

= 0⇒ ˙̃λ1 = 2µ̃(x− xDTED) (50a)

∂J2
∂y

= 0⇒ ˙̃λ2 = 2µ̃(y − yDTED) (50b)

∂J2
∂θ

= 0⇒ ˙̃λ3 = λ̃1(V sin θ)− λ̃2(V cos θ) (50c)

Optimal control equation:

∂J2
∂u

= 0⇒ 2u = −λ̃3 (50d)

State equations:

∂J2

∂λ̃1
= 0⇒ ẋ = V cos θ (50e)

∂J2

∂λ̃2
= 0⇒ ẏ = V sin θ (50f)

∂J2

∂λ̃3
= 0⇒ θ̇ = u (50g)

Slackness equation:

∂J2
∂µ̃

= 0⇒ d2threshold − (x− xDTED)2 − (y−yDTED)2 + s̃2 = 0

(50h)

Switching condition:

∂J2
∂s̃

= 0⇒ 2µ̃s̃ = 0. (50i)
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Realizing that the Lagrange multipliers may be different, note that the necessary

conditions for Min Control above admit the same equations as for Max Distance with

the exception of Equations (50d) and (50h).

The automatic recovery generated for Min Control must also meet the require-

ments of aggressive and timely. Every optimal recovery resulting from the Min Con-

trol formulation is timely by design. Upon trigger, the automatic recovery becomes

aggressive because it is only triggered when |u(t)| = umax (where symmetric control

is assumed) for the time interval from trigger time up through but not including the

time at the closest point of approach, i.e. ∀ t ∈ [t0, tCPA). Examination of the slack-

ness equation shows that s̃ 6= 0 due to the fact that the 2-norm distance threshold

constraint is not active except at the closest point of approach, where t = tCPA. In

other words, the 2-norm of every other element of the optimal path is greater than the

distance threshold, except at t = tCPA where the 2-norm equals dthreshold. Since s̃ 6= 0,

then µ̃ = 0 in order to satisfy the switching condition. Integrating the equations of

motion yields the identical results as for Max Distance, and, therefore, results in the

equivalent optimal solution ∀ t ∈ [t0, tCPA)

|u(t)| = umax (51a)

x(t) = x0 +
V

umax
(sin θ(t)− sin θ0) (51b)

y(t) = y0 −
V

umax
(cos θ(t)− cos θ0) (51c)

θ(t) = θ0 + (t− t0)umax. (51d)

The optimal Max Distance solution shown previously in Equation (48) is iden-

tical to the optimal Min Control solution shown in Equation (51) ∀ t ∈ [t0, tCPA).

The analytical solutions show the equivalence of the Max Distance and Min Control

optimal control and optimal path solutions ∀ t ∈ [t0, tCPA) at the instant at which
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the auto recovery maneuver is triggered (i.e. commanded by the autopilot). In order

to determine which method should be used for real-time onboard calculations, the

computational results will be compared to determine which method has the fastest

computational speed.

3.7 2-D Numerical Results

A generic heavy aircraft was used for the simulation. For the purposes of this

research, a military transport flying a low-level route at V = 210 kts (or 108 m/sec)

is assumed. An aggressive recovery at control limits umax or umin is defined here to be

± 9◦/sec of turn rate. This is based on the assumption that aggressive maneuvers for

this aircraft are ± 60◦ of bank flying at 108 m/sec. These values are representative of

the performance of a slow to medium speed military transport. An aircraft standard

turn rate is 3◦/sec, so the Auto GCAS aggressive recovery maneuver is three times the

standard turn rate. For the Min Control formulation, the automatic recovery is trig-

gered when the timely Min Control solution requires 9◦/sec of turn rate (aggressive).

For the Max Distance formulation, the predicted recovery trajectory will always be

at the aggressive 9◦/sec turn rate, but the automatic recovery is only triggered when

the min point of closest approach equals dthreshold (i.e. the keep-out zone or buffer

around the DTED post), thus being timely. In this example, dthreshold is defined to

be 5 miles.

Figure 18 shows the optimal path and optimal control results for the commanded

auto recovery for both optimal control formulations. Figure 18 a) on the left is a

bird’s eye view of the optimal aircraft trajectory, and Figure 18 b) on the right is the

optimal control input versus time. The aircraft is initially travelling Northeast, with

the aircraft’s x-position defined as East and the y-position defined as North. The

aircraft initial conditions are x0 = 1.5 miles, y0 = 1.0 miles, and heading θ0 = 5◦,
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where 0◦ heading is defined as East.

Figure 18 shows a comparison of the results for Min Control Formulation (blue

diamonds) and Max Distance (green circles) prior to the point of trigger of the au-

tomatic recovery. Note that neither the optimal aircraft trajectories nor the optimal

control inputs are equivalent for Max Distance and Min Control prior to the trig-

gering of the auto recovery. The red asterisks represent the CPAs for each the Max

Distance and Min Control formulations. The black X marks the point of radial tan-

gency for the Max Distance formulation. The point at which the aircraft finishes the

max rate turn and transitions to a constant heading as seen in Figure 18 a) is the

time point in the Max Distance solution where the aircraft transitions from a max

control effort turn and rolls out on the radial ray to a zero control effort constant

heading as shown on the right in Figure 18 b).
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Figure 18. a) Optimal Aircraft Trajectory and b) Optimal Control Results for Max
Distance and Min Control Formulations Prior to Triggering the Auto Recovery

Figure 19 shows the moment the automatic recovery was initiated for both formu-

lations. From this plot it is clear that the Max Distance and Min Control formulations
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admit the exact same optimal path and optimal control up until the point of closest

approach denoted by the red asterisk (just after this point the control would be given

back to the pilot). Figure 19 does not show the control being returned to the pilot,

but rather shows the optimal control solution admitted by the optimizer for the entire

time horizon. However, in a real-time implementation, control would be immediately

returned to the pilot just after the point of closest approach once clearance of terrain

was assured.
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Figure 19. Optimal Aircraft Trajectory and Optimal Control Results for Max Distance
and Min Control Formulations at the Trigger Point of the Auto Recovery

Figure 20 shows a zoomed in view of the optimal path and optimal control solution

in order to more clearly see that the optimal paths are identical for both formulations

up until the CPA. This demonstrates that both formulations admit the same path at

the point in time that the automatic recovery is triggered. Note in both Figure 19

and 20 that control would be transitioned from the autopilot back to the pilot after

the algorithm ensures clearance of terrain obstacles. In this one obstacle scenario,

control would given back to the pilot right after the CPA, however the entire optimal

path and optimal control solution are shown for clarity.
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Figure 20. Optimal Aircraft Trajectory and Optimal Control Results for Max Distance
and Min Control Formulations at the Trigger Point of the Auto Recovery (Zoomed In
View)

While the Max Distance and Min Control optimal solutions are not equivalent

prior to trigger, Figure 20 shows that they do admit equivalent optimal control and

optimal path solutions at the trigger point for t ∈ [t0, tCPA).

For clarification, tCPA lies in the interval [t0, tf ]. The time at closest point of

approach tCPA is the same for both the Min Control and Max Distance solutions.

Control would be given back to the pilot just after tCPA, once the algorithm assures

that the aircraft will clear terrain. When to give control back to the pilot is an

implementation decision, not an optimal control result.

3.8 Method Comparison

In comparing the Max Distance and Min Control formulations for the specific

2-D example, both the trigger point and the computational speed of the NLP solver

IPOPT were considered. Because the automatic recovery maneuvers must be cal-

culated quickly and executed at the last second, computational speed is extremely
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important. When the two optimal control formulations are compared, both have the

same trigger point of 1.81 miles since they admit equivalent solutions. However, the

Min Control formulation has a quicker NLP solver time and therefore Min Control is

the recommendation for Auto GCAS implementation.

Table 8 shows the comparison of results for the trigger point and the NLP solver

speed for both the Max Distance and Min Control formulations for 80 collocation

points.

Table 8. Comparison of Max Distance & Min Control Results for 80 collocation pts

Method x0 at Trigger NLP Solver Time

Max Distance 1.81 mi 0.386 sec

Min Control 1.81 mi 0.301 sec

It is also important to note that warm starting the algorithm was used in running

both the Max Distance and Min Control simulations. Once an optimal solution was

found it was fed back as the initial guess for the next iteration as the aircraft moved

closer to the obstacle.

3.9 Two-Phase Formulation for Min Control

Up to this point, the problem has been posed as a single-phase optimal control

problem. However as a single-phase, it is difficult to seek the exact point in time where

triggering the auto recovery needs to take place for the Min Control formulation.

Creating a two-phase problem formulation allows the trigger criteria to be imposed

on the first phase for the Min Control formulation. This is done by adding two linkage

constraints.
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Linkage Constraint 1 This constraint enforces continuity of states and time

across the two phases. Subscript 1 denotes Phase 1 and subscript 2 denotes Phase 2.

x02 − xf1 = 0 (52a)

y02 − yf1 = 0 (52b)

θ02 − θf1 = 0 (52c)

t02 − tf1 = 0 (52d)

Linkage Constraint 2 Phase transition occurs when the distance derivative with

respect to the obstacle is zero, i.e. at closest point of approach. Then in Equations

(53) and (54), t = tCPA.

d =
√

(x(t)− xDTED)2 + (y(t)− yDTED)2 (53a)

d2 = (x(t)− xDTED)2 + (y(t)− yDTED)2 (53b)

Next, take the derivative to get ḋ, the relative velocity of the aircraft to the obstacle.

We know that velocity with respect to the single obstacle equals zero at the CPA,

therefore it can be used as the linkage constraint.

2dḋ = 2(x(t)− xDTED)ẋ+ 2(y(t)− yDTED)ẏ (54a)

ḋ = [(x(t)− xDTED)ẋ+ (y(t)− yDTED)ẏ]/d (54b)

ḋ = [(x(t)− xDTED)V cos θ + (y(t)− yDTED)V sin θ]/d (54c)

Use the final values of Phase 1 to check ḋtf , which is the distance derivative at the
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end of Phase 1. Phase transition occurs when ḋtf = 0.

ḋtf = (xf − xDTED) cos θf + (yf − yDTED) sin θf (55)

Figure 21 shows the two-phase solution for the Min Control formulation. Trig-

gering of the auto recovery is commanded when control |u(t)| = umax for the first

phase where t ∈ [t0, tCPA). Mathematically a discontinuity exists in the optimal con-

trol at this jump condition between the two phases, however computationally a finite

time transition occurs between the two phases (shown by the three collocation points

during the transition at the end of Phase 1).
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Figure 21. Two-Phase Optimal Aircraft Trajectory and Optimal Control Results for
the Min Control Formulation at the Trigger Point of the Auto Recovery

3.10 Cost Functional Selection

As was shown above, the Max Distance and Min Control formulations with the

cost functionals given in Equations (30) and (34) respectively are equivalent for the
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2-D case with a single obstacle and a single control. For the 3-D case, tractability

needs to be considered. In the 3-D case the maximization of Equation (30) requires

a search of the entire local terrain map over all possible aircraft trajectories to find

the closest point. In contrast, the minimization formulation in Equation (34) only

requires searching over a finite number of controls to find the minimum control,

which significantly reduces the search space. Based on this and the desire to have

a formulation that will be suitable for real-time implementation, the Min Control

formulation is chosen for all work in subsequent chapters. In short, the best way to

achieve an optimal recovery trajectory for aircraft with lower climb performance is

to associate the aggressive requirement with a Min Control cost functional and the

timely requirement with the threshold distance constraint.

3.11 Summary

In summary, an optimal control approach was introduced in this chapter to solve

the automatic ground collision avoidance problem by mapping the aggressive and

timely auto recovery requirements to the optimal control formulation. Two optimal

control formulations for optimal Auto GCAS were developed from this mapping. For

a 2-D single obstacle example, this research demonstrated the equivalence of the op-

timal path and optimal control solutions for the Max Distance with a Timely Trigger

technique and the Min Control with an Aggressive Trigger technique at the point

of trigger of the auto recovery. The fact that the formulations were shown to have

the same optimal control solutions when the auto recovery is triggered means that

either of them can be chosen with good results for the 2-D case and that the user

can decide which implementation makes the most sense for their particular aircraft

and mission. Further, an optimal Auto GCAS algorithm must perform in real-time

or near real-time to provide constant terrain protection, which means that this au-
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tomatic recovery capability would be limited to aircraft with sufficient computing

capability. Due to the real-time requirement, the Min Control with an Aggressive

Trigger technique with its faster execution time is recommended.

Chapter IV will present the methodology for choosing two of the important pieces

of the 3-D optimal control formulation for Auto GCAS. How to model the digital

terrain is discussed first, followed by how to implement the terrain path constraint

for Auto GCAS.

107



IV. 3-D Auto GCAS Optimal Control Implementation

The 2-D example problem with a single control in Chapter III demonstrated that

the Max Distance and Min Control formulations for Auto GCAS are equivalent at

the trigger point for the one obstacle scenario. Before solving for the 3-D model case,

the appropriate digital terrain approximation and path constraint for the 3-D optimal

control formulation must be chosen. For Auto GCAS, the path constraint is based

on digital terrain. Therefore, the focus of this chapter is on two specific pieces of an

optimal control formulation for Auto GCAS: 1) how to model the digital terrain, and

2) how to implement the path constraint.

4.1 Path Constraint Implementation/Evaluation

4.1.1 Terrain Approximation.

For the real-world implementation, the aircraft is not simply avoiding a single ob-

stacle or post, but avoiding the ground. Therefore, the best method to approximate

the ground for use as a constraint must be determined. In Chapter II, two different

ways to approximate the digital terrain were presented: the F-16 Auto GCAS terrain

scanning method and the National Aeronautics and Space Administration’s (NASA’s)

compressed digital terrain map (CDTM) method. The F-16 scanning method is com-

putationally fast, which is due to the fact that the 3-D digital terrain is converted

into a 2-D terrain profile. This scanning method works very well for one pre-planned

trajectory which can be compared to the 2-D profile, however, if multiple trajectories

are going to be considered then a fast way to approximate the 3-D terrain is desired

(especially for an optimal control method which considers an infinite number of tra-

jectories within the given bounds). Although CDTM is a continuous approximation

of 3-D terrain and computationally fast, it is only piece-wise continuous. Hence, it is
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not smooth and therefore not differentiable. This research uses an optimal control ap-

proach requiring an NLP solver. NLP solvers require continuous gradient information

to find local and global minima, therefore continuous and smooth path constraints

must be supplied to the NLP. Second-derivative information is required in order to

meet second-order optimality criteria. Hence, a continuous and smooth surface ap-

proximation of the discrete DTED posts as a path constraint is required. To meet

this requirement a third method was developed to create a continuous and differen-

tiable surface approximation. The continuous surface can then be evaluated at any

query point using different interpolation schemes. MatLab has a built-in function

‘griddedInterpolant’ in the Mapping Toolbox that performs interpolation of multi-

dimensional gridded data like DTED [59]. The griddedInterpolant function performs

“a cubic interpolation of the values at neighboring grid points in each respective

dimension” [59]. For three-dimensional data like DTED, the cubic interpolation is

performed in two dimensions. The griddedInterpolant function is computationally

fast because the interpolating polynomials and coefficients can be determined outside

the NLP and then quickly queried in the NLP for path constraint evaluation. Four

interpolation schemes were considered for this research: ‘nearest’, ‘linear’, ‘cubic’,

and ‘spline.’

In order to compare the four interpolation methods, synthetic DTED was created.

The red stems in Figure 22 represent a 20x20 grid of equispaced posts created from 0

to 24 units in both the x-axis and y-axis with corresponding terrain heights z created

based on the analytical function ‘peaks’ in MatLab given in Equation (56)

z = 3(1− x)2e(−(x
2)−(y+1)2) − 10

(x
5
− x3 − y5

)
e(−x

2−y2) − 1

3
e(−(x+1)2−y2). (56)

Any negative z values were replaced with a zero height value so that all terrain

heights would be greater than or equal to zero. The three x, y, and z matrices are
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provided to griddedInterpolant to create the 2-D interpolant F . The interpolant F is

queried with an x and y-vector representing an aircraft path for interpolation in the z-

direction, where the vector zinterp = F (x,y). For this comparison, a finely spaced 0.1

x-vector from 0 to 24 is created along with a y-vector of the same length at a constant

value of y = 23.0. The interpolant F is then queried with these x and y-vectors to

produce the four different interpolations for zinterp as shown. A comparison of the

four interpolation methods is shown in Figure 23, which is zoomed in from Figure 22

to show only the last two rows of DTED in the y-direction. The first interpolation is

done at y = 23.0 and the second at y = 23.5 to illustrate the differences between the

interpolation schemes. The red stems represent the digital terrain posts spaced 1.2632

units apart with ‘true’ terrain height z. The green line shows the nearest neighbor

interpolation, the black line shows the linear interpolation, the magenta line shows

the cubic interpolation, and the blue line shows the spline interpolation method.

Figure 22. DTED posts for Sample 20x20 Post Grid
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Figure 23. Comparison of Four Interpolation Methods at Two Different Y ‘Slices’

4.1.1.1 Advantages and Disadvantages.

The ‘nearest’ method interpolates by assigning the value of the nearest sample grid

point to the query point [59]. As Figure 23 depicts, sometimes the nearest neighbor

method overestimates as shown by the interpolation at y = 23.0 and sometimes it

underestimates as shown by the interpolation at y = 23.5. Further, the interpolated

data from the ‘nearest’ method is discontinuous and hence not suitable for use by the

NLP. With the ‘linear’ method, the interpolated value is a linear interpolation of the

values of the neighboring grid points in each required dimension. Since the ‘linear’

method is only C0 continuous, it is not adequate for use by the NLP solver.

Both the ‘cubic’ and ‘spline’ methods use a cubic interpolation of values of neigh-

boring grid points in each dimension. However, ‘cubic’ uses a cubic convolution

scheme and is C1 continuous, while ‘spline’ is based on a cubic spline scheme and is

C2 continuous [59]. Since the NLP solver IPOPT (used for this research) requires that

both first and second derivatives are continuous to find 2nd-order optimality condi-

tions, the ‘spline’ method was chosen to interpolate the DTED for this research. If an

NLP solver is used, any twice-differentiable interpolating function will do. Aguilar et

al. found that both Multiquadric Radial Basis Functions (RBFs) and Multilog RBFs

were the best interpolation methods for mountainous terrain since spline methods
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smooth the data and may not be representative of the actual terrain [2]. “[A spline]

method is very useful for creating elevation models of areas with gently varying terrain

and smooth slope transitions. However, it is very sensitive and not suitable for sharp

changes in value over short distances, such as steep cliffs or man-made features. In

such situations, it has a tendency to over-exaggerate the value of neighboring sample

points” [2]. A suggestion for further research is to examine the suitability of other

interpolation methods such as Multiquadric and Multilog RBFs for Auto GCAS when

operating in mountainous terrain.

Synthetic digital terrain data was created by modifying Equation (56) with an

affine transformation on x and y, where x, y, and z represent the longitude, latitude,

and height of the digital terrain. This approach was used because the peaks function

has an analytical solution and hence could be used as the truth source to compare

against the different interpolation schemes. The new function z = f(x̃, ỹ) is shown in

Equation (57)

z = 3(1− x̃)2e(−(x̃
2)−(ỹ+1)2) − 10

(
x̃

5
− x̃3 − ỹ5

)
e(−x̃

2−ỹ2) − 1

3
e(−(x̃+1)2−ỹ2). (57)

where the x and y values have been scaled and shifted using the affine transformations

x̃ = α(x−β) and ỹ = α(y−β), where α = 3, 600 m and β = 10, 800 m. The α and β

values were chosen to match the same dimensions in meters as the mountainous area

of interest in Southern California examined for this research. Negative z values were

replaced with a zero height value to resemble the terrain area of interest that is entirely

above sea level. The z values were then scaled using z̃ = z ∗ 100 to approximately

match the height in meters of the candidate terrain. Three grid resolutions of 900 m,

90 m, and 30 m post spacing were created to simulate the resolution of actual DTED

and SRTM DTED. The results are shown in Table 9.
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Table 9. Error in Meters for Four Interpolation Methods

900 m Post Spacing (similar to DTED-0 spacing)

Nearest Linear Cubic Spline

Underestimate (m) 174.82 35.74 19.92 22.98
Overestimate (m) 178.16 64.74 52.68 47.00

Standard Dev of Error (m) 22.08 5.96 2.64 2.33
Mean of Error (m) -3.85e-02 -4.08e-02 -1.43e-02 -3.10e-03

90 m Post Spacing (similar to DTED-1/SRTM-1 spacing)

Nearest Linear Cubic Spline

Underestimate (m) 20.37 0.38 2.75 2.96
Overestimate (m) 20.29 6.96 5.09 4.59

Standard Dev of Error (m) 2.22 0.13 0.07 0.07
Mean of Error (m) -4.43e-04 -4.43e-04 -7.02e-05 -6.93e-05

30 m Post Spacing (similar to DTED-2/SRTM-2 spacing)

Nearest Linear Cubic Spline

Underestimate (m) 5.118 0.038 0.877 0.959
Overestimate (m) 5.119 2.243 1.500 1.375

Standard Dev of Error (m) 0.702 0.022 0.014 0.013
Mean of Error (m) -4.35e-05 -4.35e-05 -6.17e-06 -6.16e-06

The top two plots in Figure 24 show the comparison of sample digital terrain data to

a surface approximation of the digital data using a spline interpolation method. The

bottom two plots in Figure 24 show the error between the analytical expression in

Equation (57) (the truth source) and the spline interpolation methods for 900 m and

90 m spacing. As shown in Table 9 and Figure 24 the spline interpolation method has

a smaller error for 90 m than for 900 m post spacing. 90 m is the same post spacing

as SRTM-1 used for this research.
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Figure 24. Raw Digital Terrain Posts with a Surface Approximation using Spline
Interpolation and Interpolation Error between Truth and Spline for 900 m and 90 m
Spacing

Aguilar et al. concluded that “terrain morphology, sampling density of the points

observed and the interpolation method have a significant bearing on the accuracy

of interpolated heights” for digital gridded terrain models [2]. The factor with the

most impact on the quality of the interpolation was terrain morphology, hence an

interpolation scheme should be tailored to the type of terrain you are flying over.

Further, as expected the higher the sampling density of the raw digital terrain model,

the higher accuracy of the interpolated heights. For this research, a compromise was

found between an accuracy that is good enough for collision avoidance and computa-

tional speed of the on-board algorithm that is fast enough for real-time computations.

Therefore, SRTM-1 with ∼90 meter post spacing is used with a spline interpolation

method to estimate the height of the terrain under the optimal aircraft path. Based

on the results of the limited error analysis given in Table 9, an overestimate of the

terrain height of 4.59 m and an underestimate of 2.96 m is possible with 90 m post

spacing. The standard deviation of the error is 0.07 m and the mean is -6.93e-05 m.

For this research, a terrain buffer of dthreshold = 106.68 m (350 ft) is used. Hence,
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the overestimate and underestimate error values are small compared to dthreshold. Up

to this point, metric units were used due to the fact that the standard format for

DTED is in meters. However, for the remainder of the research herein, English units

of nautical miles (NM) for the aircraft (x, y) location and feet (ft) for aircraft altitude

and terrain height will be used as that is the standard convention for aviation.

4.2 Path Constraint Implementation

In order to account for DTED and interpolation errors, a path constraint must

be implemented that incorporates a buffer. This buffer is necessary to incorporate

not only the desired minimum miss distance from terrain but also any uncertainties

due to DTED error, terrain approximation uncertainty, and navigation/location un-

certainty. Two methods to implement this terrain path constraint were considered

for this research, a buffer around the terrain and a buffer around the aircraft.

4.2.1 Terrain Buffer Method.

There are multiple ways to incorporate the terrain buffer. The buffer can be

applied to discrete terrain posts, to a 2-D terrain profile (as done in the F-16 Auto

GCAS), to a 3-D faceted surface approximation (as done in the NASA Small UAV

Auto GCAS), or to a 3-D continuous surface approximation. For this research a 3-D

continuous surface approximation is chosen with a terrain buffer. Two methods of

implementing a terrain buffer path constraint are considered, a Look-Down approach

and a left-center-right (LCR) Look-Down approach. Note that because the constraint

will be imposed at each sample point (collocation point) along the aircraft trajectory,

this is a ‘forward’-looking approach.

115



4.2.1.1 Look-Down.

The simplest way to implement a path constraint to guarantee the aircraft trajec-

tory stays above the terrain is by using a Look-Down approach. First, the continuous

surface approximation of the DTED is created outside the NLP solver using the grid-

dedInterpolant function as outlined in Appendix B. The NLP verifies that the path

constraints for staying above the terrain buffer are satisfied for the optimal path by

evaluating the interpolating function F . The interpolating function F is evaluated in

the z-dimension using the optimal path x∗ and y∗. The clearance above the terrain

is simply calculated by subtracting the interpolated terrain height from the actual

altitude of the aircraft from the optimal path z∗ as shown in Equations (58) and (59).

Clearance = z∗ − Zinterp (58)

Clearance ≥ 350 ft (59)

The path constraint ensures that the clearance above terrain is always greater than or

equal to the terrain buffer, dthreshold, which in this research is 350 ft. The terrain buffer

is analogous to a nuisance-free altitude for Auto GCAS. A nuisance-free altitude of 350

ft was determined to be acceptable to pilots for a 500 ft AGL low-level in mountainous

terrain. The 350 ft buffer is explained in more detail in Chapter V Section 5.5.

Advantages and Disadvantages

The advantage of the Look-Down method is that it is extremely fast because there

is only one path constraint per collocation point. However, its disadvantage is that

although the aircraft is guaranteed to be above the terrain, no lateral separation

from terrain is guaranteed. It is possible to have a mountain slope right next to the

aircraft. This is not desirable, therefore an alternative method is proposed called

Left-Center-Right (LCR) Look-Down.
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4.2.1.2 LCR Look-Down.

Because the Look-Down constraint only ensures a vertical separation above the

terrain, it is possible that the aircraft could be safely above the terrain below it,

but dangerously close to a sheer or steep surface laterally. Therefore, additional

lateral constraints were considered. The LCR Look-Down method incorporates two

additional path constraints compared to Look-Down, adding the left and right look-

down constraints. Once the NLP solver creates a candidate optimal path, parallel

paths offset to the left and to the right are created within the NLP solver as shown

in Equations 60 where x∗ and y∗ are the optimal aircraft path and χ∗ is the optimal

aircraft heading. The lateral offset distance ‘buffer’ is the same distance as the vertical

terrain buffer.

xleft = x∗ + buffer ∗ cos(χ∗ +
π

2
) (60a)

xright = x∗ − buffer ∗ cos(χ∗ +
π

2
) (60b)

yleft = y∗ − buffer ∗ sin(χ∗ − π

2
) (60c)

yright = y∗ + buffer ∗ sin(χ∗ − π

2
) (60d)

Then the ‘griddedInterpolant’ function representing the surface approximation is

queried for the left and right constraint paths as well as at x∗, y∗, and the clearance

for the left and right paths is calculated as detailed in Appendix B. The clearance

values for the left and right paths are compared to a terrain buffer of 0 ft as shown in

Equations (61) and (62). Hence, the left and right path constraints ensure that the
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left and right parallel paths are always greater than or equal to the terrain height.

Clearanceleft ≥ 0 ft (61)

Clearanceright ≥ 0 ft (62)

Advantages and Disadvantages

The disadvantage of the LCR Look-Down method is that the constraints are in

three discrete locations, so it is possible that with higher resolution DTED (where post

spacing is smaller than the lateral buffer), there could be a post that falls in between

the aircraft optimal path and the left or right constraint check (within the accuracy

of the interpolation method). But with the current implementation of SRTM-1 this is

not as much of an issue. The main advantage of the LCR Look-Down method is that it

is computationally fast while still giving extra collision protection to the left and right

of the aircraft. Overall, the LCR Look-Down constraint method is a good combination

of speed and accuracy. It provides a greater measure of protection than the Look-

Down method since LCR Look-Down incorporates the additional lateral constraints.

With LCR Look-Down there are now three constraint checks per collocation point

with only a modest decrease in computational speed.

4.2.2 Aircraft Buffer Method.

An alternative method to adding a buffer to the terrain is to add a buffer around

the aircraft. The method explored for this research is accomplished by adding a

sphere-shaped buffer around the aircraft.
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4.2.2.1 Sphere Method.

In this method, a sphere buffer is utilized around the aircraft using the equation

(x−xac)2 +(y−yac)2 +(z−zac)2 = r2 where xac, yac, and zac are the aircraft location

at the center of the sphere and r is the radius of the sphere, which is the buffer.

The aircraft buffer acts in the same way as the terrain buffer in that both have the

purpose of protecting the aircraft from terrain. However, in the terrain buffer case the

discrete aircraft location vector is being compared to a continuous and differentiable

surface approximation of the terrain plus the buffer. In the aircraft buffer method,

the continuous sphere buffer is being compared to the discrete SRTM DTED posts.

First, it is necessary to parse the SRTM DTED database down to just the SRTM

DTED posts that lie below (in the shadow) of the aircraft sphere. This will speed up

computation time by only considering the posts of interest. A 350 ft sphere radius

(buffer) is used for this research, exactly the same as the terrain buffer, dthreshold.

With the 350 ft sphere radius and SRTM DTED Level 1, a minimum of four and

maximum of seven posts can be captured at each collocation point as depicted in

Figure 25.

“A minimum of four captured posts is ideal because they will essentially cover

a quadrant of terrain below the aircraft and will minimize missing large deviations

in the height of terrain” [91]. SRTM DTED Level 1 has a nominal post spacing

(at the equator) of ∼90 m which is ∼295 ft post spacing. It makes sense that the

diameter of the sphere must be greater than this post spacing in order to ensure that

a minimum of one SRTM-1 post is captured in the shadow of the sphere. In this

specific example, the sphere diameter must be greater than 295 ft, thus the sphere

radius must be greater than 147.5 ft. Note that at the latitude and longitude of the

Southern California terrain used in this research, the posts in latitude are spaced

at 92.45 m (303.3 ft) apart South to North, while the posts in longitude are spaced
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Figure 25. SRTM DTED Level 1 with Four to Seven Captured Posts in Sphere Shadow

75.98 m (249.3 ft) apart West to East due to the 35.1◦ N location. These latitude and

longitude spacings were calculated using the reference vector information provided

for this 1◦ by 1◦ SRTM DTED Level 1 tile (that is referenced by its Southwest corner

of -117.5◦ W and 35.1◦ N).

Since the majority of operational low levels are now flown at 500 ft AGL, SRTM

DTED level 1 can be used in a large majority of anticipated operational missions.

However, SRTM DTED Level 2 should be available for contingency purposes when

flight below 500 AGL is desired. “It is recommended that DTED Level 2 only be

loaded on memory-limited aircraft if flight below 300 ft AGL is anticipated or de-

sired” [91].

The next step in determining whether a collision would occur is to evaluate the

SRTM DTED posts in the shadow on the ground against the sphere itself. To do

this, an algorithm was developed to compare the position of the sphere to the discrete

SRTM DTED posts using the inside-outside function developed by Barr [8]. The
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equation of a sphere with radius r and aircraft position (xac, yac, zac) is shown in

Equation (63).

(x− xac)2

r2
+

(y − yac)2

r2
+

(z − zac)2

r2
= 1 (63)

For each propagated aircraft position all points on the sphere will satisfy Equa-

tion (63). Next, each candidate SRTM DTED post position (xDTED, yDTED, zDTED)

is checked against the sphere using Equation (64) which incorporates Barr’s inside-

outside function [8]

(xDTED − xac)2

r2
+

(yDTED − yac)2

r2
+

(zDTED − zac)2

r2
= S (64)

where S is the normalized radius of the sphere. Equation (64) allows any point in

space to be evaluated relative to the sphere.

If


S = 1, (xDTED, yDTED, yDTED) is on the surface.

S > 1, (xDTED, yDTED, yDTED) lies outside the sphere.

S < 1, (xDTED, yDTED, yDTED) lies inside the sphere.

(65)

As shown in Equation (65), values of S greater than or equal to 1 indicate that the

top of the DTED post lies outside or on the sphere, thus the constraint is S ≥ 1

for all DTED posts. Equation (64) was put in matrix form to quickly determine if

the top of a DTED post is located inside of the sphere buffer as shown in Equa-

tions (66) to (68) [91]. The index i represents each collocation point on the aircraft

trajectory, and the index j represents each SRTM DTED post.

Qij =
[
(xDTEDj

− xaci) (yDTEDj
− yaci) (zDTEDj

− zaci)
]

(66)
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N =


1
r2

0 0

0 1
r2

0

0 0 1
r2

 (67)

Then a collision occurs IF and only IF

QijNQ
T
ij < 1 ∀ i, j. (68)

If the QNQT term is less than 1 then a SRTM DTED post is located inside the sphere

buffer, indicating a collision. This calculation is performed for each DTED post in

the shadow of the sphere at each collocation point.

Advantages and Disadvantages

With the 350 ft buffer as the sphere radius, four to seven SRTM DTED posts are

in the sphere shadow at any given aircraft position. Hence, for each collocation point,

four to seven constraints exist. Within the NLP solver these constraint evaluations

check if the tops of the four to seven SRTM DTED posts are located inside the

protective sphere buffer at each collocation point. In the NLP solver, if the tops of

any of the posts are located inside the sphere (i.e. path constraint violated) at any

collocation point then another iteration must be generated to satisfy the constraints

which requires another iteration of gradient checks. This process is repeated until

none of the SRTM DTED post tops lie inside the sphere and an optimal control

and optimal path are found. Although tractable, this process is time-consuming and

impractical in an NLP solver. This is due to the requirement to find which SRTM

DTED posts lie in the shadow of the sphere which includes if/then statements which

are not suitable for use in an NLP. Therefore, the sphere method is problematic to

implement in the NLP solver.

For the Multi-Trajectory Auto GCAS with no NLP solver involved, Trombetta [91]
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has implemented the sphere buffer successfully and has demonstrated that the method

keeps the aircraft avoidance path out of terrain. The logic works as designed and is

accurate. This research demonstrates that the terrain buffer method also successfully

successfully keeps the aircraft avoidance path clear of terrain. However, the sphere

method is not an option to implement inside the NLP solver, hence, cannot be used

for this research. Therefore, due to its ease of implementation and fast computational

speed, the terrain buffer with LCR Look-Down method is recommended and is used

in the research herein.

4.3 Summary

Chapter IV answered two important questions in order to formulate the 3-D Auto

GCAS optimal control solution technique: 1) how to best approximate the digital

terrain and 2) how to best implement the path constraint.

After reviewing different alternatives, this chapter provided the rationale for mod-

eling the digital terrain as a continuous and differentiable surface approximation us-

ing a spline interpolation of discrete DTED posts and for implementing the path

constraint as a terrain buffer using a LCR Look-Down method approach. Chapter V

presents the 3-D Auto GCAS methodology and results.
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V. 3-D Results with Two Controls

Chapter I presented the motivation and background for the Auto GCAS problem

and showed that the requirement to auto maneuver close to the ground at the last sec-

ond makes this problem challenging. The pertinent literature was reviewed in Chapter

II, highlighting that a gap exists for ground collision avoidance in that existing Auto

GCAS systems use pre-planned trajectories and optimal control has only been ap-

plied as a solution method to a counter-hijack problem but not to a last-second Auto

GCAS problem. Chapter III defined the aggressive and timely requirements, pre-

sented the mapping of aggressive and timely to the optimal control formulation, and

introduced the methodology for the two Auto GCAS optimal control formulations.

In Chapter IV, two specific pieces of a 3-D optimal control implementation for Auto

GCAS were developed: 1) the terrain surface was modeled as a continuous and differ-

entiable approximation, and 2) the path constraint chosen was an LCR Look-Down

constraint with a terrain buffer. This chapter illustrates the method and presents

results for the 3-D case for an aircraft with two control inputs in some representative

scenarios. To do this, it is necessary to understand the terrain used in this research as

well as the flight performance of the aircraft models used for simulation. The terrain

classification and aircraft performance are described because they necessary inputs to

determine the length of the time horizon necessary for the optimizer. Once the time

horizons are presented, the five-state and two-control simplified point-mass model is

described along with the Min Control cost functional and aggressive trigger. Next,

the 3-D low-level scenarios are introduced and results are presented for representative

scenarios followed by a limited study to determine the effect of weighting the bank

angle µ and load factor Nz terms in the cost functional. Finally, a comparison of the

Optimal Auto GCAS to Multi-Trajectory Auto GCAS is presented.
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5.1 Terrain Used in the Research

Freemont Peak (referred to as GCAS Mountain (Mt) by the Auto GCAS test

team) has been used repeatedly for F-16 Auto GCAS testing at Edwards AFB for

three decades. For commonality, this research also uses the GCAS Mt test area for

simulations for the Optimal Auto GCAS method. Figures 26 and 27 depict a surface

plot of the SRTM DTED Level 1 for the GCAS Mt test area in the East-North-Up

(ENU) reference frame used in this research. The origin (0,0) in the Southwest corner

equates to (35.1◦ N, 117.5◦ W) in latitude and longitude. Figure 26 more accurately

depicts the scaling of the terrain height in relation to the x and y-axes and is a rotated

view to highlight the valley leading up to GCAS Mt which is used for the run-ins for

the simulations. The blue lines show the aircraft pilot paths for the ‘high’ and ‘low’

altitude low-levels at a 286◦ compass heading. In Figure 27 the z-axis is exaggerated

in order to highlight the elevation change of GCAS Mt and to more easily see the

plotted optimal trajectories for the scenarios in the remainder of the document.

Figure 26. GCAS Mountain Test Area in ENU Rotated to Show Valley

Figure 27. GCAS Mountain Test Area in ENU, Z-axis Zoomed
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5.2 Terrain Classification

Before the optimal control formulation can be run, an appropriate time horizon

must be chosen. In the case of Auto GCAS, the time horizon depends both on the

terrain in which the aircraft is flying and on the aircraft’s performance. The terrain

type is important because a shorter time horizon could be sufficient for flight over flat

terrain, while a longer time horizon would be necessary for flight over mountainous

terrain with steep inclines. Therefore, classification of terrain is necessary and is

covered in this section. Dragut determined that three classifications for terrain were

adequate and named them Upland, Midland, and Lowland. Trombetta combined

Dragut’s three hierarchical levels of Upland, Midland, and Lowland [26] with the

current Air Force classification structure (as defined in Air Force Instruction 11-202

Vol. 3 [92]) to maintain some relation to current Air Force standards [91]. The Air

Force categorizes terrain in two levels, as either mountainous or non-mountainous.

The Air Force’s definition of mountainous terrain is terrain with ≥ 500 ft change

in altitude in 1
2

NM [92]. This mountainous definition will remain unchanged, but

Trombetta [91] calls it Upland to be consistent with Dragut’s three levels [26]. In order

to define the remaining two classification levels, Midland and Lowland, Trombetta

halved the criteria for mountainous terrain and the resulting Terrain Class Definitions

are shown in Table 10 [91].

Table 10. Terrain Classification Based on Terrain Height Data [91]

Terrain Class Definitions

500 ft per 1
2

NM ≤ Upland
250 ft per 1

2
NM ≤ Midland < 500 ft per 1

2
NM

Lowland < 250 ft per 1
2

NM
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5.3 Aircraft Performance

Next, the performance of candidate military heavy aircraft is discussed. Corre-

spondence with test pilots in the 418th and 419th Flight Test Squadrons (FLTS) at

Edwards AFB provided the operational low-level airspeed and altitudes for the air-

craft of interest [21, 60]. Both the 418th and 419th FLTS have personnel who specialize

in low-level missions in order to conduct developmental flight test for United States

Air Force cargo and bomber aircraft. The C-5 Galaxy and the B-2 Spirit are purpose-

fully excluded from the table since neither currently have a low-level mission [21, 60].

Table 11 shows typical low-level airspeeds (in knots ground speed (KGS)) and alti-

tude ranges (in AGL) flown for each aircraft type. The turn radius and turn rate are

based on level turns.

Table 11. Military Aircraft Low Level Maneuvering Flight Performance [21, 60]

Aircraft Airspeed Altitude Nz Bank Turn Turn

(KGS) AGL (ft) (g) Angle (deg) Radius (ft) Rate (deg
sec

)

C-130 210 300-500 2 60 2,254 9.01
C-17 310 300-500 2 60 4,913 6.10
B-52 350 500 2 60 6,262 5.41
B-1 540 500 2 60 14,906 3.50

The turn radius R and turn rate ω are calculated using Equations (69) and (70) [99]

R =
V 2

g
√
N2
z − 1

(69)

ω =
V

R
(70)

where g is defined as the acceleration of gravity, Nz is normal acceleration from

Table 11, and V is the low-level airspeed from Table 11. By examining Table 11, three

easily separable speed classifications are apparent: low (C-130), medium (C-17/B-

52), and high-speed (B-1). For this research, scenarios are run for a representative
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low-speed heavy at 210 KGS and a medium-speed heavy at 310 KGS. As an initial

proof-of-concept study, the model used for this research is a simplified point-mass

model rather than the actual high-fidelity aircraft-specific models.

The data in Table 11 is used as a basis for Trombetta’s Path Propagation Criteria

to determine appropriate time horizons [91]. Specifically, the low-level airspeed is used

to determine how far forward an avoidance path needs to be propagated such that the

aircraft will achieve an altitude climbed of 4,000 ft (for terrain clearance) [91]. Next,

the turn radius and rate are used to ensure that a minimum 90◦ of turn is possible

in order to clear terrain laterally [91]. The Path Propagation Criteria are discussed

in more detail in Section 5.4.

5.4 Time Horizons

Now that terrain classification and aircraft performance have been described, the

time horizons can be determined. Using the Path Propagation Criteria developed

by Trombetta, appropriate time horizons for the optimizer were determined for each

candidate aircraft and terrain type [91]. First the length (ground distance) of the

propagated path for the Upland case was determined based on the time to climb

4,000 feet. The rest of the criteria are derived from this first measurement. The

time horizon is the maximum of either the time it takes for the aircraft to turn

90◦ (in a 2-g/60◦ bank) in order to clear terrain laterally (t90◦) or the time for the

forward path (2-g pull) to out-climb the terrain in front of it (tfwd path) as shown in

Equation (71) [91]

Path Propagation Time = max(t90◦ , tfwd path). (71)
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For the lateral paths, it is only necessary for the aircraft to achieve 90◦ of turn to

avoid the terrain forward of the aircraft’s 3-9 line [91]. Hence, the lateral paths are

relatively insensitive to the slope of the terrain in front of the aircraft [91].

The time horizons recommended by Trombetta to be used for the optimizer for the

low, medium, and high-speed heavy for each terrain type are shown in Table 12. For

this research, only the Upland scenarios will be analyzed because the digital terrain

utilized for this research meets the Upland criteria as outlined in Table 10. Therefore,

45.0, 31.0, and 28.5 sec will be used as the time horizons for the low, medium, and

high-speed heavy cases, respectively.

Table 12. Time Horizons Used for Low, Medium, and High-Speed Heavies [91]

Low-Speed Heavy (velocity = 210 KGS)

Lowland Midland Upland

Path Propagation Time (sec) 15.5 29.5 45.0

Medium-Speed Heavy (velocity = 310 KGS)

Lowland Midland Upland

Path Propagation Time (sec) 17.517 21.5 31.0

High-Speed Heavy (velocity = 540 KGS)

Lowland Midland Upland

Path Propagation Time (sec) 28.517 28.517 28.517

17 Time to turn 90◦, t90◦ , was the driving factor for the Path Propagation Time

To design an Auto GCAS for any candidate aircraft, Trombetta’s Path Propaga-

tion Criteria will need to be applied for the specific mission airspeed, terrain type,

load factor Nz and bank angle µ for the Auto GCAS recovery, and max flight path

angle γ for that aircraft. The methodology to apply Trombetta’s criteria is detailed in

Appendix B and more detail on the criteria can be found in Trombetta’s research [91].
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5.5 Terrain Buffer and Minimum Clearance Altitude

The terrain buffer, dthreshold, is the inequality path constraint for Auto GCAS as

shown in Equation (35). 500 ft AGL was chosen as the low-level scenario for this

research because it is uncommon for heavy or fighter type aircraft to fly below 500 ft

AGL, although for certain operational missions 300 ft AGL missions are authorized.

Discussions with operational pilots regarding a 500 ft AGL low level determined that

a terrain buffer of 350 ft AGL in mountainous (Upland) terrain would be acceptable

to the pilot community. Therefore, dthreshold = 350 ft AGL is what is used for this

research. However, this threshold should be selected based on mission requirements.

The terrain buffer takes into account all of the error plus the desired level of safety

(minimum clearance altitude). Hence, the terrain buffer is comprised of the min

clearance altitude and the worst-case error.

Terrain Buffer = Min Clearance Altitude + Worst-Case Error (72)

For this research, notional but representative numbers are used for the errors that

make up the worst-case error. The worst-case error is comprised of two types of error,

ground error and aircraft error. Worst-case ground error is comprised of DTED error,

interpolation error, and a tree buffer. The interpolation error is based on a limited

study done in this research in Chapter IV Section 4.1. As explained in Chapter II,

the SRTM radars sometimes only captured partial canopy heights, therefore the tree

buffer is included to account for trees and power lines not captured in the SRTM

DTED and is based on an estimate of actual tree heights versus the SRTM DTED
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terrain heights in the same area.

DTED Error = +30 ft

Interpolation Error = +15 ft

Tree Buffer = +70 ft

Worst-case Ground Error = 30 ft + 15 ft + 70 ft = +115 ft (73)

Worst-case aircraft error is comprised of GPS vertical error [25] and trajectory error18.

GPS Vertical Error = ±45 ft

Trajectory Error = ±50 ft

Worst-case Aircraft Error = ±45 ft± 50 ft = ±95 ft (74)

Summing the worst-case ground and aircraft error in Equations (73) and (74) yields

a total worst-case error of 210 ft.

Worst-Case Error = Worst-Case Ground Error + Worst-Case Aircraft Error (75)

= 115 ft + 95 ft = 210 ft (76)

Therefore, for a 350 ft terrain buffer with a worst-case error of 210 ft, the guaranteed

min clearance altitude will be 140 ft.

Min Clearance Altitude = 350 ft− 210 ft = 140 ft (77)

Given the notional error values used for this research, this means that the aircraft

is expected never to be closer than 140 ft to the actual terrain during an automatic

18The trajectory error is an estimate of the difference in actual aircraft performance versus the
model in the vertical.
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recovery. An analysis similar to the above with the appropriate error values would

have to be completed for other candidate aircraft.

5.6 Simplified 3-DOF Point Mass Model (5 States/2 Controls)

Chapter II presented the 3-DOF point mass model in Equations (17)-(21). Na-

tional Aeronautics and Space Administration’s (NASA’s) Small UAV Auto GCAS

test team concluded that winds are not necessary to consider for systems where the

winds are less than 15% of the slowest airspeed for the given platform, “and the

remaining wind effects can be accounted for as part of other uncertainties” [83]. Fur-

ther, “if the expected winds that may be encountered are greater than 30% of the

slowest airspeed, it is likely that some sort of wind estimate will be needed” [83].

These two rules-of-thumb are based on lessons learned from both the Small UAV

Auto GCAS and F-16 Auto GCAS flight tests. Note that the F-16 flies fast enough

that no wind estimates needed to be incorporated into the F-16 Auto GCAS algo-

rithm. Thus, there exists a gray area in between 15% and 30% of the slowest airspeed.

For this research, wind estimates are not included in the model, which is a reasonable

assumption for the relatively fast military heavy-type aircraft studied herein. There-

fore, assume vwx = vwy = vwz = 0 in Equations (9), (10), and (11), and the simplified

3-DOF point mass model equations of motion used for this research reduce to

ẋ = V cos γ cosχ (78)

ẏ = V cos γ sinχ (79)

ż = V sin γ (80)

γ̇ =
Nz cosµ− g cos γ

V
(81)

χ̇ =
Nz sinµ

V cos γ
. (82)
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How to best calculate winds aloft and then how to incorporate these wind estimates

into an Auto GCAS is an area for further research included in Chapter VI.

5.7 Auto GCAS 3-D Min Control Formulation

The Auto GCAS Min Control with an Aggressive Trigger optimal control formu-

lation is described in Chapter III, Section 3.4.2. As discussed in Chapter III, the Auto

GCAS Min Control formulation is a fixed final time, free final state minimization.

5.7.1 Min Control Cost Functional.

For this specific 3-D scenario, the control vector u is comprised of two controls,

bank angle µ and load factor Nz. For the Min Control cost functional, both controls

are minimized to their level-flight trim condition. Hence, bank angle is minimized

to 0◦ while the load factor is minimized to 1 g. Next, the controls are normalized

such that when either control is at a maximum (or minimum) value its contribution

to the cost is equal to one. Thus, the general Min Control cost functional given in

Equation (34) becomes

Minimize:
u∈A

J =

∫ tf

t0

[
µ(t) Nz(t)− 1

]
R

 µ(t)

Nz(t)− 1

 dt (83)

where the control weighting matrix R is defined as

R =

 r1
(µmax)2

0

0 r2
(Nzmax−1)2

 . (84)

For a majority of the scenarios, an equal weighting of r1 = r2 = 1 is used. Addition-

ally, results from a limited study of different weighting matrices R are provided in

Section 5.8.2.
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The matrix form of the cost functional in Equations (83) and (84) is equivalent to

Minimize:
u∈A

J =

∫ tf

t0

r1

(
µ(t)

µmax

)2

+ r2

(
Nz(t)− 1

Nzmax − 1

)2

dt (85)

where µmax = π
3

and Nzmax = 2 g, and the bounds on the controls are

−π
3
≤ µ(t) ≤ π

3
(86)

0 g ≤ Nz(t) ≤ 2 g. (87)

With the squared terms in Equation (85), the NLP solver would minimize µ(t) to

zero and minimize Nz(t) to one. To improve NLP performance, values were scaled to

be symmetric about zero and on the order of one. Therefore, Nz(t) is shifted to be

from -1 g to 1 g and a variable NzScaled
(t) is defined as NzScaled

(t) = Nz(t) − 1. The

cost functional in Equation (85) becomes

Minimize:
u∈A

J =

∫ tf

t0

r1

(
µ(t)

µmax

)2

+ r2

(
NzScaled

(t)

NzScaledmax

)2

dt (88)

where NzScaledmax
= 1 g, and the bounds on NzScaled

(t) are

−1 g ≤ NzScaled
(t) ≤ 1 g. (89)

Notice that NzScaled
(t) is only used in the cost functional J and that Nz(t) is used in

Equations (78) to (82) in order to satisfy the equations of motion.

5.7.2 Aggressive Trigger.

Per the definition of aggressive in Chapter III, an aggressive trajectory is one where

at least one control is at its min or max limit ∀ t ∈ [t0, tCPA). Any combination of

controls that satisfy this results in an aggressive maneuver. As explained in Chapter
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III, every solution admitted by the Min Control with an Aggressive Trigger solution is

timely. When the min control solution admitted by the optimizer meets the aggressive

criteria, then the auto recovery will be triggered. For the two controls µ and Nz used

in this research, the general aggressive trigger criteria given in Equation (36) become

µ(t) = µmax

or

µ(t) = µmin

and/or

Nz(t) = Nzmax

or

Nz(t) = Nzmin



∀ t ∈ [t0, tCPA). (90)

Because the optimal solutions are calculated at a discrete 0.5 sec update rate (2

Hz) for these 3-D scenarios, the aggressive trigger criteria are only approximated.

For these simulations, these criteria in Equation (90) are approximately satisfied by

triggering the last converged optimal solution. This allows getting arbitrarily close

to the theoretical optimal solution, which often lies between runs.

5.8 3-D Results

Several cases were run to illustrate the performance of the Min Control with an

Aggressive Trigger methodology. First, the medium-speed heavy results are explained

for four representative low-level scenarios, two at ∼1,000 ft AGL and two at ∼500

ft AGL where the symbol ∼ means approximately. Next, one scenario is run for

the medium-speed heavy using different weighting matrices R with the purpose of

determining the most appropriate control weightings and to show the flexibility of the

cost functional tailored to meet mission needs for climbing or turning performance
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constraints. Finally, a comparison is run between the Optimal Auto GCAS solution

and the Multi-Trajectory Auto GCAS solution for the low-speed heavy.

5.8.1 Medium-Speed Heavy Results.

5.8.1.1 3-D Test Scenarios.

For illustrative purposes, the medium-speed heavy is used for the majority of the

scenarios. Two different altitude cases were run for the medium-speed heavy aircraft.

Case 1 is a ‘High’ altitude low-level at ∼1,000 ft AGL and case 2 is a ‘Low’ altitude

low-level at ∼500 ft AGL (see Table 13). Note that the aircraft initial MSL altitude

is kept constant, not the AGL altitude.

Table 13. 3-D Test Scenarios

Medium-Speed Heavy - Case 1 ‘High’

Airspeed Altitude Init Flight Path

(KGS) AGL (ft) Angle γ0 (deg)

310 ∼1,000 0◦ (level)

310 ∼1,000 -5◦ (dive)

Medium-Speed Heavy - Case 2 ‘Low’

Airspeed Altitude Init Flight Path

(KGS) AGL (ft) Angle γ0 (deg)

310 ∼500 0◦ (level)

310 ∼500 5◦ (nose-high, level)

As shown in Table 13, for Case 1 two scenarios were run: one with an initial flight

path angle of γ0 = 0◦ (level) and the other with γ0 = −5◦ (dive). This γ0 = −5◦

(dive) scenario was run for the ‘High’ scenario to show that the algorithm can also
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protect the aircraft in a dive at low altitude. For Case 2, the γ0 = 0◦ level scenario

was run as well as a γ0 = 5◦ (nose-high, level) scenario. This nose-high level scenario

was run in place of a climb scenario because with a constant γ0 = 5◦ climb in altitude,

the aircraft trajectory was steep enough such that the terrain was no longer in the

time horizon of the optimizer.

For this section, an equal control weighting of r1 = r2 = 1 is used. For each

simulation case, results are shown at each iteration (0.5 sec update rate, i.e. 2 Hz) in

a tabular format as well as in a ‘horizontal’ and ‘bird’s-eye’ view. The medium-speed

heavy has a maximum flight path angle γ of 15◦, Nz limits of 0 g/+2 g, and bank

angle µ limits of ± 60◦. The medium-speed heavy has a time horizon of 31 sec in

Upland terrain based on its speed of 310 KGS from Table 12. 91 collocation points are

used for all four scenarios. A new optimal solution is calculated every 0.5 sec along

a straight-line pilot path from the initial conditions to the peak of GCAS Mountain

located at x = 4.09 NM East, y = 5.10 NM North of the origin. With this 0.5 sec

update rate (time step), the distance step between each run of the optimizer is ∼ 260

ft for the medium-speed heavy.

Case 1 ‘High’ Level

This scenario was selected to show that when the aircraft is flying just below but near

the top of mountainous terrain, that the most likely a climbing maneuver will be the

lowest cost. The initial conditions for this Case 1 ‘High’ altitude and γ0 = 0◦ level
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scenario are shown below

x0 = 5.66 NM East (91)

y0 = 4.72 NM North (92)

z0 = 3, 750 ft MSL (93)

γ0 = 0◦ (94)

χ0 = 164◦ (polar)/286◦ (compass). (95)

Note that z0, γ0, and χ0 remain constant for each iteration, while x0 and y0 change as

the aircraft progresses further towards the GCAS Mountain peak. Table 14 shows the

data for each run (each time the optimizer was run at a new initial condition) which

include: the run number, t0, tCPA, the aggressiveness ratio, the max and min bank

angle µ required, the max and min load factor Nz required, the NLP solver time, and

the minimum vertical clearance for the left, center, and right constraint paths. The

data for the run where the Auto GCAS recovery was triggered is colored orange.
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Table 14. Data Table for Medium-Speed Heavy, Case 1 High, γ0 = 0◦

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 21.04 0.00 0.35 -0.00 1.12 1.00 2.145 269 350 383
2 0.5 20.55 0.00 0.21 -0.00 1.12 1.00 0.505 265 350 386
3 1.0 20.01 0.00 0.10 -0.00 1.13 1.00 0.427 266 350 387
4 1.5 19.05 0.00 0.02 -0.06 1.14 1.00 0.444 266 350 391
5 2.0 18.74 0.00 0.00 -0.53 1.14 1.00 0.580 276 350 405
6 2.5 18.32 0.00 0.01 -0.22 1.15 1.00 0.339 260 350 391
7 3.0 17.45 0.00 0.02 -0.56 1.16 1.00 0.351 255 350 393
8 3.5 16.91 0.00 0.02 -0.81 1.17 1.00 0.309 251 350 398
9 4.0 16.39 0.00 0.02 -1.03 1.18 1.00 0.291 252 350 399
10 4.5 15.95 0.00 0.02 -1.29 1.19 1.00 0.345 249 350 403
11 5.0 15.64 0.00 0.00 -1.51 1.21 1.00 0.342 247 350 407
12 5.5 14.84 0.00 0.00 -1.81 1.22 1.00 1.076 243 350 406
13 6.0 14.35 0.00 0.01 -2.36 1.24 1.00 0.348 238 350 407
14 6.5 11.25 0.00 0.01 -2.81 1.27 1.00 0.333 234 350 413
15 7.0 10.71 0.00 0.00 -3.29 1.30 1.00 0.280 238 350 414
16 7.5 10.19 0.00 0.00 -3.48 1.34 1.00 0.774 235 350 418
17 8.0 9.75 0.00 0.00 -3.46 1.38 1.00 0.334 238 350 418
18 8.5 9.44 0.00 0.00 -5.33 1.42 1.00 0.304 253 350 424
19 9.0 9.02 0.00 0.00 -6.56 1.47 1.00 0.871 254 350 428
20 9.5 8.64 0.00 0.00 -5.48 1.54 1.00 0.618 244 350 419
21 10.0 8.15 0.00 0.00 -5.39 1.61 1.00 0.702 250 350 412
22 10.5 7.61 0.00 0.01 -6.23 1.70 1.00 0.924 255 350 410
23 11.0 6.65 0.00 0.00 -4.66 1.83 1.00 0.685 264 350 399
24 11.5 6.34 0.00 0.01 -4.82 1.97 1.00 0.927 278 350 397
25 12.0 5.92 0.15 0.01 -5.23 2.00 1.00 0.751 283 350 397
26 12.5 5.05 0.56 0.14 0.00 2.00 0.96 0.725 322 350 383

Trigger criteria were approximately satisfied on Run 26 with tCPA =5.05 sec, hence

the auto recovery lasts 5.05 sec before control would be returned to the pilot. The

green dots in Figure 28 show the collocation points on the triggered path while the

green line in Figure 29 shows a top view of the triggered path. In Figures 28 and 29

only the optimal paths from the even iterations are plotted in order to de-clutter the

figures. The aggressiveness ratio is a measure of how long the control was at a max
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Figure 28. Optimal Path (26th Run), Med-Speed Heavy, Case 1 High, γ0 = 0◦

Figure 29. Optimal Path and Control (26th Run), Med-Speed Heavy, Case 1 High,
γ0 = 0◦
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or min limit compared to the tCPA and is defined as

Agg ratio =
time at max/min

tCPA
. (96)

In the 2-D example with a single control the Agg ratio was 1 at trigger. However,

in this 3-D example with two controls, the Agg ratio only approaches 1 at trigger.

This is due to using a discrete number of 91 collocation points and marching forward

in time at a discrete step size (update rate of 0.5 sec). As the step size is decreased

and the number of collocation points is increased the closer the Agg ratio is to 1 at

trigger. This is explored for a specific case and is presented at the end of this Section

in Section 5.8.1.2 (refer to Figure 36). For this scenario the time at the max limit

of 2 g was 2.83 sec, hence the Agg ratio = 0.56. The two control plots for Nz and

µ for the triggered path show that the max Nz of 2 g was required for 2.83 sec but

almost no bank was required. The trigger criteria of 2 g was approximately satisfied

on Run 26 with the Agg ratio = 0.56 as shown in Table 14 with minimum vertical

clearance for the left, center, and right paths are 322 ft, 350 ft, and 383 ft AGL. The

NLP solver time for Run 26 was 0.725 sec, while the average NLP solver time was

0.547 sec (largest and smallest time thrown out and the rest averaged).
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Case 1 ‘High’ Dive

The Case 1 ‘High’ low-level dive scenario is covered next. The initial conditions for

this medium-speed heavy scenario with an initial γ0 = −5◦ are listed below

x0 = 5.66 NM East (97)

y0 = 4.72 NM North (98)

z0 = 3, 800 ft MSL (99)

γ0 = −5◦ (100)

χ0 = 164◦ (polar)/286◦ (compass) (101)

Figures 30 and 31 show the side and top view for this dive scenario. Table 15

lists the data for each run until trigger. The aggressive trigger criteria of 2 g is

approximately satisfied on Run 18 with a time at the max limit of 2 g of 3.25 sec and

tCPA = 9.02 sec, resulting in an Agg ratio = 0.36. Load factor Nz = 2 g was only

required from 0 to 3.25 sec (vice until 9.02 sec), indicating that the theoretical optimal

lies after Run 18 and before Run 19. At Run 19, the NLP solver reported that the

max number of iterations (internal to the NLP) was achieved and that an optimal

solution was not found. The max bank angle µ required was -12.92◦ (slight right

bank). At trigger, z0 = 3,410.8 ft MSL. The NLP solver time at Run 18 was 0.987

sec, while the average NLP solver time was 0.581 sec. The minimum vertical clearance

values for the left, center, and right constraints were 282, 350, and 455 ft AGL. The

350 ft clearance for the center path shows that the auto recovery was timely, while

the Agg ratio of 0.36 shows that the maneuver approximated the aggressive criteria.
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Table 15. Data Table for Medium-Speed Heavy, Case 1 High, γ0 = −5◦

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 21.64 0.00 0.00 -5.91 1.27 1.00 1.412 211 350 507
2 0.5 16.91 0.00 0.00 -6.13 1.29 1.00 0.762 213 350 507
3 1.0 16.39 0.00 0.00 -7.29 1.31 1.00 0.588 213 350 515
4 1.5 15.95 0.00 0.00 -8.75 1.33 1.00 0.725 204 350 517
5 2.0 15.64 0.00 0.00 -9.86 1.36 1.00 0.623 198 350 503
6 2.5 15.22 0.00 0.00 -10.51 1.40 1.00 0.715 200 350 501
7 3.0 14.35 0.00 0.01 -12.31 1.42 1.00 0.687 186 350 499
8 3.5 13.81 0.00 0.01 -12.89 1.46 1.00 0.307 192 350 505
9 4.0 13.29 0.00 0.01 -13.19 1.51 1.00 0.306 202 350 509
10 4.5 12.54 0.00 0.00 -13.21 1.56 1.00 0.314 211 350 518
11 5.0 12.34 0.00 0.01 -13.54 1.62 1.00 0.338 215 350 523
12 5.5 11.74 0.00 0.01 -15.57 1.67 1.00 0.307 207 350 516
13 6.0 11.25 0.00 0.02 -16.39 1.73 1.00 0.276 212 350 522
14 6.5 10.71 0.00 0.03 -17.30 1.81 1.00 0.554 218 350 529
15 7.0 10.19 0.00 0.03 -17.77 1.90 1.00 0.366 229 350 522
16 7.5 9.75 0.01 0.02 -17.09 2.00 1.00 0.368 242 350 508
17 8.0 9.44 0.15 0.00 -2.42 2.00 0.96 1.353 317 350 396
18 8.5 9.02 0.36 0.01 -12.92 2.00 0.96 0.987 282 350 455

Figure 30. Optimal Path (18th Run), Med-Speed Heavy, Case 1 High, γ0 = −5◦ Dive
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Figure 31. Optimal Path and Control (18th Run), Med-Speed Heavy, Case 1 High,
γ0 = −5◦ Dive

Table 16 shows a comparison of the data for the Case 1 High altitude level and

dive scenarios at trigger. The aircraft (x, y) initial conditions are identical for each

of the runs in both the level and dive scenarios for comparison. The auto recovery is

triggered four seconds earlier in the dive scenario (8.5 vs. 12.5 sec), while the tCPA is

four seconds longer (9.02 vs. 5.05 sec) indicating a longer Auto GCAS activation time,

which makes sense due to the more demanding nature of the dive. The aggressiveness

ratio for the dive scenario is lower with a value of 0.36 and the average NLP time for

the dive is higher at 0.581 sec.

Table 16. Data Comparison of Case 1 High Alt Level and Dive Scenarios at Trigger

Scenario Trigger Auto Activation Aggressiveness NLP time

Point Duration (tCPA) Ratio average

High Alt Level Run 26 (12.5 sec) 5.05 sec 0.56 0.547 sec

High Alt Dive Run 18 (8.5 sec) 9.02 sec 0.36 0.581 sec
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Case 2 ‘Low’ Level

This Case 2 ‘Low’ altitude and γ0 = 0◦ level scenario has initial conditions identical

to those of the medium-speed heavy Case 1 ‘High’ level scenario given in Equa-

tions (91) to (95), except that z0 = 3, 200 ft MSL. The data for each run are given

in Table 17. The green circles and green line represent the triggered auto recovery as

shown in Figures 32 and 33. Aggressive criteria for trigger were approximately sat-

isfied at Run 20, and tCPA = 7.09 sec where control would be returned to the pilot.

Load factor Nz = 2 g from 0 sec to 5.03 sec (vice until 7.09 sec) with an Agg ratio =

0.71 due to the 0.5 sec update rate. In other words, the theoretical optimal solution

is somewhere after Run 20 and before Run 21 0.5 sec later. Note that at Run 21

(not shown) the NLP solver reported that the max number of iterations was achieved

(4,000 iterations) without finding an optimal solution. The NLP time at trigger was

1.056 sec, while the average NLP time was higher at 1.137 sec. The left, center, and

right minimum clearance values were 240 ft, 350 ft, and 448 ft AGL, respectively.
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Table 17. Data Table for Medium-Speed Heavy, Case 2 Low, γ0 = 0◦

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 17.45 0.00 0.00 -6.67 1.24 1.00 1.991 236 350 532
2 0.5 16.91 0.00 0.00 -2.43 1.27 1.00 0.567 284 350 473
3 1.0 16.91 0.00 0.00 -3.13 1.29 1.00 0.661 283 350 482
4 1.5 16.39 0.00 0.00 -2.24 1.31 1.00 1.157 293 350 458
5 2.0 15.64 0.00 0.00 -5.41 1.33 1.00 1.038 285 350 506
6 2.5 15.22 0.00 0.00 -6.65 1.34 1.00 0.866 272 350 503
7 3.0 14.84 0.00 0.00 -4.71 1.37 1.00 0.907 287 350 480
8 3.5 13.81 0.00 0.00 -5.19 1.40 1.00 1.360 285 350 475
9 4.0 13.29 0.00 0.01 -6.24 1.43 1.00 0.904 284 350 475
10 4.5 13.29 0.00 0.00 -4.38 1.47 1.00 0.946 304 350 453
11 5.0 12.54 0.00 0.00 -1.35 1.52 1.00 1.195 298 350 409
12 5.5 12.12 0.00 0.00 -1.40 1.57 1.00 1.118 302 350 411
13 6.0 11.74 0.00 0.00 -3.38 1.61 1.00 1.378 318 350 423
14 6.5 11.25 0.00 0.01 -3.79 1.67 0.99 1.472 320 350 421
15 7.0 10.71 0.00 0.01 -3.40 1.75 0.98 1.124 326 350 416
16 7.5 10.19 0.00 0.01 -3.14 1.83 0.96 1.077 329 350 407
17 8.0 9.75 0.00 0.00 -3.32 1.96 0.96 1.339 326 350 400
18 8.5 9.02 0.16 0.00 -2.77 2.00 0.96 1.608 320 350 397
19 9.0 8.15 0.35 0.00 -13.95 2.00 0.96 1.260 285 350 445
20 9.5 7.09 0.71 0.25 -60.00 2.00 0.95 1.056 240 350 448

Figure 32. Optimal Path (20th Run), Med-Speed Heavy, Case 1 Low, γ0 = 0◦ Level
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Figure 33. Optimal Path and Control (20th Run), Med-Speed Heavy, Case 1 Low,
γ0 = 0◦ Level

Case 2 ‘Low’ Nose High, Level

The fourth scenario was designed to show for the low altitude scenario that a slight

nose up flight path angle would be beneficial in that it would result in a later trig-

ger time compared to the Case 2 ‘Low’ Level scenario. The data for each run is

listed in Table 18, while the top and side view of the optimal path are shown in

Figures 34 and 35. The aggressive trigger criteria was approximately satisfied at Run

22 with 2 g and a max bank angle of -36.19◦. This equates to a trigger time of 1

second later than the level case. The time at the max limit of 2 g was 3.26 sec, the

activation duration tCPA was 6.65 sec, which yields an Agg ratio = 0.49. The NLP

solver time at trigger was 0.838 sec, while the average NLP solver time was 0.618.

The minimum vertical clearance for the left, center (optimal), and right paths was

246 ft, 350 ft, and 456 ft AGL.
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Table 18. Data Table for Medium-Speed Heavy, Case 2 Low, γ0 = 5◦

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 21.04 0.00 0.20 -0.00 1.02 1.00 2.148 249 350 407
2 0.5 17.45 0.00 0.02 -0.04 1.03 1.00 0.608 246 350 414
3 1.0 16.91 0.00 0.00 -0.44 1.04 1.00 0.538 254 350 427
4 1.5 16.39 0.00 0.00 -0.54 1.05 1.00 0.413 259 350 436
5 2.0 15.95 0.00 0.00 -0.76 1.07 1.00 0.413 263 350 432
6 2.5 15.44 0.00 0.00 -0.93 1.08 1.00 0.411 265 350 433
7 3.0 14.84 0.00 0.00 -0.85 1.10 1.00 0.411 261 350 433
8 3.5 14.35 0.00 0.00 -1.05 1.12 1.00 0.416 262 350 433
9 4.0 13.81 0.00 0.00 -1.11 1.14 1.00 0.411 266 350 431
10 4.5 13.29 0.00 0.00 -1.22 1.16 1.00 0.415 267 350 423
11 5.0 12.85 0.00 0.00 -1.68 1.19 1.00 0.412 274 350 416
12 5.5 12.34 0.00 0.00 -1.93 1.22 1.00 0.569 278 350 415
13 6.0 11.74 0.00 0.00 -1.52 1.25 1.00 0.363 275 350 416
14 6.5 11.25 0.00 0.00 -1.81 1.30 1.00 0.362 280 350 416
15 7.0 10.71 0.00 0.00 -1.70 1.34 1.00 0.491 287 350 409
16 7.5 10.19 0.00 0.00 -1.67 1.40 1.00 0.710 291 350 404
17 8.0 9.75 0.00 0.00 -2.60 1.47 0.99 0.454 301 350 396
18 8.5 9.24 0.00 0.00 -2.92 1.56 0.98 1.296 308 350 394
19 9.0 8.64 0.00 0.00 -1.38 1.67 0.96 1.071 311 350 389
20 9.5 8.15 0.00 0.00 -2.73 1.91 0.95 1.049 310 350 395
21 10.0 7.61 0.19 0.05 -15.03 2.00 0.96 1.077 310 350 448
22 10.5 6.65 0.49 0.14 -42.33 2.00 0.95 0.838 246 350 456

Figure 34. Optimal Path (22nd Run), Med-Speed Heavy, Case 1 Low, γ0 = 5◦ Level
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Figure 35. Optimal Path and Control (22nd Run), Med-Speed Heavy, Case 1 Low,
γ0 = 5◦ Level

Table 19 is a data comparison for the Case 2 Low altitude level and nose-high

scenarios at the trigger point. Here, the aircraft position (x, y, z) and heading χ

initial conditions are identical for each of the runs in both the level and nose-high

scenarios, however, for the level scenario the initial flight path angle γ0 = 0◦ and

for the nose-high scenario γ0 = 5◦. Although it would be difficult for an aircraft

to fly with a 5◦ and level altitude, the point here is to simply show that if at any

point the pilot input a slight nose-up attitude that the trigger of the Auto GCAS

recovery will be later than if the aircraft remained at γ0 = 0◦. Table 19 shows that

the auto recovery is triggered one second later for the nose-high scenario (10.5 vs. 9.5

sec), while the tCPA is shorter (6.65 vs. 7.09 sec) indicating a shorter Auto GCAS

activation time. This is due to the advantage of the nose-high initial flight path angle

of γ0 = 5◦ which makes the nose-high scenario less demanding for the optimizer. The

aggressiveness ratio for the nose-high scenario is lower with a value of 0.49 vice 0.71

and the average NLP time is significantly lower at 0.618 sec vice the 1.137 sec average

NLP time for the more challenging low altitude level scenario.
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Table 19. Data Comparison of Case 2 Low Alt Level and Nose-High Scenarios at Trigger

Scenario Trigger Auto Activation Aggressiveness NLP time

Point Duration (tCPA) Ratio average

Low Alt Level Run 20 (9.5 sec) 7.09 sec 0.71 1.137 sec

Low Alt Nose-High Run 22 (10.5 sec) 6.65 sec 0.49 0.618 sec

5.8.1.2 Satisfaction of the Aggressive Criteria.

As seen in the four previous scenarios, the aggressiveness ratios approached but

did not equal 1, hence the aggressive trigger criteria are only approximated. This

is due both to the discrete 0.5 sec update rate (2Hz) and the number of collocation

points used (91 points). Therefore, the update rate is changed to 0.01 sec (100 Hz)

and the number of collocation points is increased to 181 in order to demonstrate

that the aggressiveness ratio approaches 1 in the limit. Figure 36 shows t0 vs. the

aggressiveness ratio for the Case 2 ‘Low’ Level scenario with the faster update rate

and increased number of collocation points.

Figure 36. t0 vs. Aggressiveness Ratio, Med-Speed Heavy, Case 2 ‘Low’ Alt Level
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The blue Xs are the aggressiveness ratio for the 0.01 sec update rate and 181 colloca-

tion points (max Agg ratio is 0.84) and the red circles are the aggressiveness ratio for

the 0.5 sec update rate and 91 collocation points (max Agg ratio is 0.71). As demon-

strated in Figure 36, the aggressiveness ratio does approach 1 in the limit as the

update rate becomes faster and the number of collocation points increases. Figure 36

also shows that the results presented previously with 91 collocation points and the

0.5 update rate provided conservative estimates of aggressiveness criteria, meaning it

would trigger earlier. This is evidenced by ttrigger = 9.5 sec and Agg ratio = 0.71 for

the 91 collocation points and 0.5 sec update rate runs and ttrigger = 9.69 sec and Agg

ratio = 0.84 for the 181 collocation points and 0.01 sec update rate runs.

5.8.2 Effect of Weighting Terms in the Cost Functional.

A limited evaluation of changing the control weighting matrix R in the cost func-

tional given in Equation (83) is presented here, where R is defined in Equation (84).

The purpose is to determine the most appropriate weightings for Auto GCAS as well

as investigate how responsive the cost functional is to changing the control weightings

in order to tailor the optimal solution to climbing or turning. The weighting on the

bank angle µ term in the cost functional, r1, is set to 1 for all of the scenarios in this

research. A limited comparison is done here for the weighting on the load factor Nz

term of r2 = 0.1, r2 = 1, r2 = 5, r2 = 10, and r2 = 50.

The scenario run for this comparison is the Case 2 ‘Low’ Level for the medium-

speed heavy. An update rate of 0.5 sec is used, however 41 collocation points are

used in the optimizer for this evaluation to demonstrate the difference in NLP solver

time with less points. All of the data for each of the five control weightings are shown

first in Tables 20 to 24 and Figures 37 to 46. Then, the results for all of the control

weightings on NZ are summarized in Table 25 followed by a discussion of the results.
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5.8.2.1 Penalty on Load Factor, r2 = 0.1.

Table 20 shows the data for each time the optimizer was run at a new initial

condition which include: the run number, t0, tCPA, the aggressiveness ratio, the max

and min bank angle µ required by the optimizer (recall that positive bank is a left

turn and negative bank is a right turn), the max and min load factor Nz required by

the optimizer, the NLP solver time, and the minimum vertical clearance for the left,

center, and right constraint paths. Recall that dthreshold = 0 ft for the left and right

parallel paths, while dthreshold = 350 ft for the center (optimal) path.

Table 20. Data Table for Med-Speed Heavy, Case 2 Low, γ0 = 0◦ Level, r2 = 0.1

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 18.33 0.00 0.00 -0.72 1.25 1.00 1.357 266 350 425
2 0.5 17.33 0.00 0.00 -0.28 1.28 1.00 0.312 283 350 443
3 1.0 17.33 0.00 0.00 -0.83 1.28 1.00 0.198 270 350 428
4 1.5 16.16 0.00 0.00 -0.16 1.32 1.00 0.227 279 350 422
5 2.0 16.16 0.00 0.00 -0.49 1.33 1.00 0.249 285 350 416
6 2.5 15.23 0.00 0.00 -0.26 1.36 1.00 0.227 287 350 422
7 3.0 15.23 0.00 0.00 -0.91 1.37 1.00 0.225 280 350 418
8 3.5 14.23 0.00 0.00 -0.31 1.41 1.00 0.204 280 350 418
9 4.0 14.23 0.00 0.00 -1.03 1.43 1.00 0.212 287 350 426
10 4.5 13.06 0.00 0.00 -0.06 1.48 1.00 0.199 280 350 396
11 5.0 13.06 0.00 0.00 -0.92 1.51 1.00 0.565 302 350 400
12 5.5 12.40 0.00 0.00 -0.66 1.56 1.00 0.302 304 350 401
13 6.0 12.13 0.00 0.00 -1.17 1.60 0.99 0.276 295 350 407
14 6.5 11.13 0.00 0.00 -0.25 1.68 0.98 0.222 295 350 393
15 7.0 11.13 0.00 0.00 -1.43 1.73 0.97 0.228 307 350 416
16 7.5 9.96 0.00 0.24 -0.01 1.83 0.96 0.229 304 350 370
17 8.0 9.96 0.00 0.00 -1.75 1.96 0.96 0.413 320 350 387
18 8.5 9.30 0.07 0.00 -1.90 2.00 0.96 0.369 325 350 388
19 9.0 9.03 0.31 0.00 -7.55 2.00 0.95 0.439 294 350 398
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Figure 37. Optimal Path (19th Run), Med-Speed, Case 2 Low, γ0 = 0◦ Level, r2 = 0.1

Figure 38. Optimal Path and Control (19th Run), Med-Speed, Case 2 Low, γ0 =
0◦ Level, r2 = 0.1
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5.8.2.2 Penalty on Load Factor, r2 = 1.

Table 21. Data Table for Med-Speed Heavy, Case 2 Low, γ0 = 0◦ Level, r2 = 1

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 17.33 0.00 0.00 -1.67 1.25 1.00 0.950 265 350 450
2 0.5 17.33 0.00 0.01 -6.62 1.25 1.00 0.904 229 350 514
3 1.0 16.16 0.00 0.00 -2.10 1.28 1.00 0.292 241 350 426
4 1.5 16.16 0.00 0.02 -7.15 1.29 1.00 0.319 248 350 523
5 2.0 15.50 0.00 0.00 -0.50 1.34 1.00 0.616 284 350 417
6 2.5 15.23 0.00 -0.00 -7.73 1.34 1.00 0.241 254 350 514
7 3.0 14.23 0.00 -0.00 -2.30 1.37 1.00 0.523 270 350 420
8 3.5 14.23 0.00 0.02 -7.99 1.39 1.00 0.490 267 350 508
9 4.0 14.23 0.00 0.01 -4.23 1.42 1.00 0.494 248 350 416
10 4.5 13.06 0.00 0.00 -0.52 1.48 1.00 0.598 286 350 402
11 5.0 12.40 0.00 0.00 -1.60 1.52 1.00 0.620 306 350 404
12 5.5 12.13 0.00 -0.00 -1.54 1.57 1.00 0.615 308 350 413
13 6.0 11.13 0.00 -0.00 -4.24 1.59 1.00 0.570 282 350 406
14 6.5 11.13 0.00 0.01 -1.75 1.68 0.98 0.909 310 350 408
15 7.0 11.13 0.00 0.02 -6.95 1.70 0.99 0.572 263 350 398
16 7.5 9.96 0.00 1.45 -0.01 1.83 0.96 0.667 308 350 359
17 8.0 9.30 0.00 0.02 -3.05 1.94 0.96 0.715 325 350 390
18 8.5 9.03 0.07 -0.00 -2.27 2.00 0.96 0.750 323 350 393
19 9.0 8.03 0.23 -0.00 -7.24 2.00 0.96 0.651 289 350 397
20 9.5 6.86 0.55 0.62 -39.08 2.00 0.95 0.492 230 350 434

Figure 39. Optimal Path (20th Run), Med-Speed, Case 2 Low, γ0 = 0◦ Level, r2 = 1
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Figure 40. Optimal Path and Control (20th Run), Med-Speed, Case 2 Low, γ0 =
0◦ Level, r2 = 1
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5.8.2.3 Penalty on Load Factor, r2 = 5.

Table 22. Data Table for Med-Speed Heavy, Case 2 Low, γ0 = 0◦ Level, r2 = 5

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 17.33 0.00 0.05 -12.85 1.18 1.00 0.862 181 350 455
2 0.5 17.33 0.00 0.05 -11.52 1.21 1.00 0.343 198 350 483
3 1.0 16.16 0.00 0.06 -15.38 1.20 1.00 0.249 165 350 467
4 1.5 16.16 0.00 0.05 -12.37 1.24 1.00 0.268 179 350 484
5 2.0 15.50 0.00 0.00 -13.12 1.26 1.00 0.246 166 350 489
6 2.5 15.23 0.00 0.00 -14.25 1.28 1.00 0.290 188 350 484
7 3.0 14.23 0.00 0.11 -17.64 1.29 1.00 0.250 168 350 475
8 3.5 14.23 0.00 0.04 -16.23 1.33 1.00 0.248 190 350 485
9 4.0 13.06 0.00 0.14 -21.33 1.35 1.00 0.246 155 350 443
10 4.5 12.40 0.00 0.05 -20.00 1.40 1.00 0.246 168 350 488
11 5.0 12.13 0.00 0.00 -21.41 1.43 1.00 0.271 162 350 468
12 5.5 11.13 0.00 0.13 -23.24 1.49 1.00 0.308 171 350 467
13 6.0 11.13 0.00 0.26 -22.21 1.55 1.00 0.256 165 350 484
14 6.5 9.96 0.00 0.36 -26.26 1.63 1.00 0.286 183 350 483
15 7.0 9.96 0.00 0.28 -19.47 1.73 1.00 0.307 241 350 523
16 7.5 9.30 0.00 0.21 -15.53 1.80 1.00 0.339 235 350 489
17 8.0 9.03 0.00 0.00 -15.90 1.92 0.98 0.365 254 350 491
18 8.5 9.03 0.00 0.00 -17.55 2.00 0.98 0.365 232 350 465
19 9.0 8.03 0.23 0.51 -20.60 2.00 0.95 0.684 286 350 415
20 9.5 8.03 0.47 1.95 -41.25 2.00 0.95 0.418 229 350 430

Figure 41. Optimal Path (20th Run), Med-Speed, Case 2 Low, γ0 = 0◦ Level, r2 = 5
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Figure 42. Optimal Path and Control (20th Run), Med-Speed, Case 2 Low, γ0 =
0◦ Level, r2 = 5
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5.8.2.4 Penalty on Load Factor, r2 = 10.

Table 23. Data Table for Med-Speed Heavy, Case 2 Low, γ0 = 0◦ Level, r2 = 10

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 17.33 0.00 0.00 -13.32 1.17 1.00 1.276 191 350 454
2 0.5 17.33 0.00 0.09 -14.74 1.19 1.00 0.570 206 350 454
3 1.0 16.16 0.00 0.10 -15.55 1.19 1.00 0.296 169 350 441
4 1.5 16.16 0.00 0.11 -15.96 1.23 1.00 0.963 199 350 459
5 2.0 15.50 0.00 0.00 -16.34 1.24 1.00 0.337 205 350 463
6 2.5 15.23 0.00 0.00 -16.96 1.27 1.00 0.677 186 350 459
7 3.0 14.23 0.00 0.19 -18.81 1.28 1.00 0.608 176 350 434
8 3.5 14.23 0.00 0.17 -15.71 1.32 1.00 0.958 196 350 485
9 4.0 13.06 0.00 0.12 -21.37 1.34 1.00 0.334 149 350 424
10 4.5 12.40 0.00 0.17 -18.77 1.39 1.00 0.993 166 350 488
11 5.0 12.13 0.00 0.00 -20.09 1.43 1.00 0.366 162 350 467
12 5.5 12.13 0.00 0.00 -22.13 1.48 1.00 0.576 166 350 464
13 6.0 9.96 0.00 0.12 -22.58 1.55 1.00 0.300 162 350 468
14 6.5 9.96 0.00 0.61 -26.13 1.63 1.00 0.366 165 350 469
15 7.0 9.30 0.00 0.00 -26.78 1.73 1.00 0.333 174 350 462
16 7.5 9.03 0.00 0.00 -28.37 1.82 1.00 0.299 170 350 484
17 8.0 9.03 0.00 0.00 -21.95 1.92 1.00 0.509 208 350 503
18 8.5 9.03 0.00 0.00 -17.34 2.00 0.98 0.441 231 350 465
19 9.0 8.03 0.23 1.50 -26.06 2.00 0.95 0.479 287 350 420
20 9.5 8.03 0.47 4.92 -41.71 2.00 0.95 0.653 229 350 430

Figure 43. Optimal Path (20th Run), Med-Speed, Case 2 Low, γ0 = 0◦ Level, r2 = 10
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Figure 44. Optimal Path and Control (20th Run), Med-Speed, Case 2 Low, γ0 =
0◦ Level, r2 = 10
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5.8.2.5 Penalty on Load Factor, r2 = 50.

Table 24. Data Table for Med-Speed Heavy, Case 2 Low, γ0 = 0◦ Level, r2 = 50

Run t0 tCPA Agg Bank Bank Nz Nz NLP Clr Clr Clr
# ratio max min max min time Lft Ctr Rgt

(sec) (sec) (deg) (deg) (g) (g) (sec) (ft) (ft) (ft)

1 0 17.33 0.00 0.00 -13.46 1.16 1.00 0.840 205 350 461
2 0.5 17.33 0.00 0.34 -14.68 1.18 1.00 0.848 226 350 437
3 1.0 16.16 0.00 0.37 -14.63 1.19 1.00 0.274 178 350 436
4 1.5 16.16 0.00 0.44 -16.07 1.22 1.00 0.330 215 350 436
5 2.0 15.50 0.00 0.00 -16.24 1.24 1.00 0.198 206 350 443
6 2.5 15.23 0.00 0.00 -17.56 1.26 1.00 0.225 201 350 428
7 3.0 14.23 0.00 0.82 -18.04 1.27 1.00 0.252 179 350 420
8 3.5 14.23 0.00 0.91 -19.12 1.31 1.00 0.200 184 350 429
9 4.0 12.13 0.00 0.38 -21.68 1.34 1.00 0.355 154 350 396
10 4.5 13.06 0.00 1.24 -20.66 1.38 1.00 0.225 164 350 449
11 5.0 12.40 0.00 0.00 -22.06 1.41 1.00 0.328 166 350 419
12 5.5 12.13 0.00 0.00 -20.89 1.47 1.00 0.223 160 350 463
13 6.0 9.96 0.00 2.63 -22.13 1.56 1.00 0.760 163 350 465
14 6.5 9.96 0.00 2.40 -25.10 1.63 1.00 0.405 162 350 476
15 7.0 9.03 0.00 0.00 -25.99 1.73 1.00 0.378 173 350 463
16 7.5 9.03 0.00 0.00 -28.28 1.82 1.00 0.276 167 350 483
17 8.0 9.03 0.00 0.00 -22.21 1.92 1.00 0.279 205 350 504
18 8.5 9.03 0.00 0.00 -23.32 2.00 0.99 0.388 228 350 464
19 9.0 8.03 0.23 0.00 -59.73 2.00 0.98 0.388 285 350 423

Figure 45. Optimal Path (19th Run), Med-Speed, Case 2 Low, γ0 = 0◦ Level, r2 = 50
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Figure 46. Optimal Path and Control (19th Run), Med-Speed, Case 2 Low, γ0 =
0◦ Level, r2 = 50

Table 25 lists the data at trigger for each of the control weighting scenarios.

The column headings are r2, run number at trigger, ttrigger, tCPA, the aggressiveness

ratio, the max positive bank angle required (left bank), the max negative bank angle

required (right bank), the maximum load factor required, the minimum load factor

required, and the average NLP solver time for IPOPT. Average NLP solver time was

calculated by throwing out the longest time and the shortest time for a scenario and

averaging the remaining NLP solver times.

Table 25. Data Summary of Changing Penalty on the Nz Term in the Cost Functional

r2 Trigger ttrigger tCPA Agg Bank Bank Nz Nz NLP
(Nz (Run #) ratio max min max min avg time

Penalty) (sec) (sec) (deg) (deg) (g) (g) (sec)

0.1 19 9.0 9.03 0.31 0 -7.55 2.0 0.95 0.288
1 20 9.5 6.86 0.55 0.62 -39.08 2.0 0.95 0.576
5 20 9.5 8.03 0.47 1.95 -41.25 2.0 0.95 0.318
10 20 9.5 8.03 0.47 4.92 -41.71 2.0 0.95 0.390
50 19 9.0 8.03 0.23 0 -59.73 2.0 0.98 0.318

For each of the above simulations presented in Table 25 at the run past the trigger

point, the NLP Solver IPOPT reported either ‘Max Number of Iterations Reached’

(max iterations is set to 4,000) or ‘Infeasible’. Hence, the optimal control solution
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triggered was the closest to the theoretical optimal solution given the update rate of

2 Hz and the number of collocation points used.

For r2 = 0.1 where bank angle µ is penalized more than Nz, the optimal auto

recovery is almost a pure pull maneuver (see Figures 37 and 38). At trigger at Run

19 (see Figure 20), the auto recovery is at 2 g and requires only -7.55◦ (slight right

bank). From the data in Table 25, we see that as the value of r2 increases from

0.1 to 50 that the maximum left bank required increases from 0◦ to 4.92◦ while the

maximum right bank required increases from -7.55◦ to -59.73◦. (However, -59.73◦ was

required after tCPA; a max right bank value of -29.16◦ was required prior to tCPA.

This shows that the more Nz is penalized, the more bank is required for the optimal

control solution. Hence, the cost functional is able to be easily tailored to climbing

or turning based on mission needs.

F-16 flight tests have demonstrated that the latest trigger time (represented here

by Trigger Run # and ttrigger) and the shortest activation time (represented here by

tCPA) are the most desirable for the pilot to not consider the activation a nuisance [7].

Thus, latest trigger time and shortest auto activation time are used as measures of

performance for this weighting comparison. From the results in Table 14 it can be

seen that the aggressive trigger criteria are approximately satisfied for r2 = 0.1 and

r2 = 50 at Run 19, while the aggressive trigger criteria are approximately satisfied

for r2 = 1, r2 = 5, and r2 = 10 at Run 20. Since triggering later is desirable in an

Auto GCAS to reduce nuisances to the pilot, r2 = 1, r2 = 5, and r2 = 10 show the

best results for the latest trigger time at Run 20. Next, recall that tCPA represents

how many seconds that the Auto GCAS recovery will be activated (commanded by

the autopilot) and that control is returned back to the pilot immediately after this

point, once clearance of terrain is assured. In comparing tCPA, note that r2 = 1 has

the smallest total activation time of 6.86 sec. The only disadvantage of the r2 = 1
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weighting is that even though tCPA is the smallest, the average NLP time is the

greatest at 0.576 sec. Finally, in comparing the average NLP solver time in the last

column, we see that r2 = 5 has the fastest time of 0.318 sec. The average

The conclusion from this limited study is that r2 = 1 is the most appropriate

weighting due to both its later trigger time (Run 20) and shortest automatic recovery

activation time (tCPA = 6.86 sec). Although the larger average NLP is not desirable,

it was not the primary purpose of this research to pick the fastest computational time

for real-time implementation, but rather the best method that meets the aggressive

and timely operational requirements of Auto GCAS.

In summary, it was demonstrated that changing the weighting of the control terms

in the cost functional does influence the optimal solution to be more of a vertical or

more of a lateral maneuver. Hence, the cost functional can be tailored to what is

desired based on the mission of the aircraft. It is recommended that simulation with

a higher-fidelity model be done in order to choose the weighting of the control terms

that is most appropriate for the operational mission of the candidate aircraft.

5.8.3 Comparison of Optimal Control to Multi-Trajectory Auto GCAS.

As stated in Chapter I, the Multi-Trajectory Auto GCAS is follow-on research

that is currently being conducted by Trombetta at AFIT [91]. The Multi-Trajectory

Auto GCAS is designed for military heavy type aircraft and chooses the best of

five pre-planned automatic recovery maneuvers. A limited flight test of the Multi-

Trajectory Auto GCAS will be conducted in September 2015 at the US Air Force Test

Pilot School (TPS) on the Calspan Learjet with an onboard programmable Variable

Stability System (VSS) [96]. Use of the Calspan Learjet’s VSS will enable in-flight

simulation of a military heavy aircraft and will allow comparison between the Multi-

Trajectory Auto GCAS and the Optimal Auto GCAS in this research.
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Before the comparison is made between the two algorithms, a description of

the Multi-Trajectory Auto GCAS is necessary. Trombetta’s Multi-Trajectory Auto

GCAS includes five pre-planned avoidance paths: a Forward path (wings-level 2-g

pull until γmax is reached), Left-Up and Right-Up paths (first a 30◦ bank is com-

manded and once established then a 2-g pull is commanded until γmax is reached),

and Left and Right paths (a 60◦ bank and 2-g level turn is commanded) [91]. For

this comparison, γmax = 15.8◦ and γmin = −15.8◦ for both the Multi-Trajectory and

the Optimal Auto GCAS. Figure 47 illustrates the five pre-planned avoidance paths

used in the Multi-Trajectory Auto GCAS.

Figure 47. Illustration of the Five Pre-Planned Paths in Multi-Trajectory Auto GCAS

The Multi-Trajectory Auto GCAS implements a ‘last man standing’ approach

similar to Small UAV Auto GCAS, where any predicted avoidance paths that intersect

digital terrain are eliminated but no auto recovery is commanded as long as there is

at least one viable avoidance path [83, 91]. Once the last of the five avoidance paths

intersects with the digital terrain, then the algorithm commands that path as the

auto recovery.

Metrics that allow comparison between optimal recovery trajectories and the

Multi-Trajectory Auto GCAS recovery trajectories were developed for Auto GCAS

design and analysis purposes and are presented in the next section.
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5.8.4 Metrics.

Two metrics were developed to compare each method, an Aggressiveness Metric

and a Timeliness Metric. The Aggressiveness Metric compares the control of the

Multi-Trajectory Auto GCAS solution to the Optimal Auto GCAS solution at the

same trigger time and initial conditions. The comparison is made at the trigger time

for the Multi-Trajectory Auto GCAS. The Aggressiveness Metric is a measure of how

much less control would be required had a Min Control optimal solution been found

at the same trigger point and initial conditions. The goal is to show how well (or not

so well) the Multi-Trajectory solutions span the space of all available aggressive and

timely trajectories. Because control is the measure of aggressiveness, the Min Control

cost functional is used as a basis of comparison between the two algorithms. Applying

the Min Control cost functional to the triggered path of the Multi-Trajectory Auto

GCAS yields

JMulti =

∫ tCPAMulti

t0

r1

(
µMulti(t)

µmax

)2

+ r2

(
NzMulti

(t)− 1

Nzmax − 1

)2

dt (102)

where µmax = 60◦ and Nzmax = 2 g. Recall that the Min Control cost functional,

JOptimal, was defined as shown in Equation (85). An equal weighting of the two control

terms is used for this comparison, hence, r1 = r2 = 1 for both Equation (85) and (102).

The Aggressiveness Metric is defined as the difference between the two performance

measures divided by the performance measure of the triggered path of the Multi-

Trajectory Auto GCAS as shown below in Equations (103) and (104)

Aggressiveness Metric ≡ JMulti − JOptimal
JMulti

(103)

= 1− JOptimal
JMulti

. (104)
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The Aggressiveness Metric approaches zero if the Multi-Trajectory solution approaches

the optimal solution. A high value (closer to one) of the Aggressiveness Metric indi-

cates that there still exists a Min Control path that an aware pilot could have executed

at the time of trigger for the pre-planned auto recovery that were not included as one

of the Multi-Trajectory path options.

The Timeliness Metric measures how much later the Optimal Auto GCAS auto

recovery is triggered than the triggered Multi-Trajectory auto recovery as shown in

Equation (105).

Timeliness Metric ≡ ∆ttrigger = ttriggerOptimal
− ttriggerMulti

(105)

A ∆ttrigger = 0 represents that the triggered Multi-Trajectory avoidance path trig-

gered at the same time as the Min Control optimal solution, and a non-zero number

represents how much additional time is left before the initiation of an Optimal Auto

GCAS avoidance path is required. The larger the ∆ttrigger the higher the likelihood

that the pilot will consider the triggered Multi-Trajectory avoidance path a nuisance.

5.8.5 Comparison Scenario - Case 1 ‘Low’ Level.

The initial conditions for this scenario are identical to those of the Case 1 ’Low’

Level and shown below

x0 = 5.66 NM East (106)

y0 = 4.72 NM North (107)

z0 = 3, 200 ft MSL (108)

γ0 = 0◦ (109)

χ0 = 164◦ (polar)/286◦ (compass). (110)
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However, for this comparison scenario γmax for the Optimal Auto GCAS was set to

15.8◦ (vice 15.0◦) in order to match the Multi-Trajectory Auto GCAS algorithm. This

larger γmax allows steeper trajectories which results in later trigger times than were

seen in the Case 1 ’Low’ Level scenario. The update rate is 0.5 sec (2 Hz) as before.

At Run 31 (ttrigger = 15.0 sec), the Multi-Trajectory Auto GCAS triggered the

‘Right-Up’ path which is a -30◦ bank (right) climbing turn. The Right-Up avoidance

path is designed as follows: once a bank of µ = −30◦ is attained, then a 2-g pull is

commanded until flight path angle γmax = 15.8◦ is reached. At Run 34 (ttrigger = 16.5

sec), the Optimal Auto GCAS triggered. The the optimal path is shown together with

the five pre-planned paths in Figures 48 and 49. The green path is the optimal path

that was triggered, the blue path is the Multi-Trajectory path that was triggered, the

red paths are the Multi-Trajectory paths that collided with terrain, while the yellow

Xs indicate where along the Multi-Trajectory paths the first collision with terrain

occurred. Recall that the Multi-Trajectory path uses a sphere buffer (with a 350 ft

radius) around each time point in the propagated path. Hence, the yellow Xs indicate

the first time point in the propagated path where the sphere buffer intersected with

the terrain.

Figure 48. Side View of Multi-Trajectory Auto GCAS Paths (Run 31) vs. Optimal
Auto GCAS Path (Run 34), Low-Speed Heavy, Case 1 Low, γ0 = 0◦
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Figure 49. Top View of Multi-Trajectory Auto GCAS Paths (Run 31) vs. Optimal
Auto GCAS Path (Run 34), Low-Speed Heavy, Case 1 Low, γ0 = 0◦

5.8.6 Comparison Results.

The Aggressiveness Metric calculation is shown in Equations (111) to (113). The

Aggressiveness Metric of 0.72 means that the effective control budget of the Optimal

Auto GCAS maneuver is only 28% of the effective control budget of the triggered

Multi-Trajectory Auto GCAS maneuver. Hence, the Aggressiveness Metric indicates

that there do exist other paths that an aware pilot could have executed that were not

included as one of the five Multi-Trajectory pre-planned paths.

Aggressiveness Metric = 1− JOptimal
JMulti

(111)

= 1− 1.8296

6.5414
(112)

= 0.7203 (113)

The Multi-Trajectory Auto GCAS auto recovery was triggered at ttrigger = 15.0 sec

(Run 31), while the Optimal Auto GCAS auto recovery was triggered at ttrigger = 16.5
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sec (Run 34), representing a ∆ttrigger = 1.5 sec as shown in Equation (116).

∆ttrigger = ttriggerOptimal
− ttriggerMulti

(114)

= 16.5 sec− 15.0 sec (115)

= 1.5 sec (116)

These metrics indicate that if the optimal path was included as one of the five

pre-planned paths, that the Multi-Trajectory Auto GCAS should choose the optimal

path and therefore trigger at a later time, reducing nuisances.

To investigate if including the optimal path as one of the options would in fact re-

sult in the optimal path being triggered, the Multi-Trajectory Auto GCAS algorithm

was modified so that the Optimal Auto GCAS path replaced the Left path. The

same Case 1 ‘Low’ Level scenario was run at 210 kts for the low-speed heavy and the

results were that at ttrigger = 15.5 sec (Run 32) the modified Multi-Trajectory Auto

GCAS triggered the Optimal Auto GCAS path. Therefore, the Timeliness Metric in

this case is

∆ttrigger = 16.5 sec− 15.5 sec (117)

= 1.0 sec, (118)

demonstrating that the Multi-Trajectory Auto GCAS algorithm did in fact choose

the Optimal Auto GCAS path as its ‘Best of 5 paths’ which resulted in a later trigger

time which is more desirable. Figure 50 depicts the results of the modified Multi-

Trajectory Auto GCAS run for the same scenario as previous. As before, the red

paths represent the Multi-Trajectory paths that collided with terrain, while the green

path now represents the Optimal Auto GCAS path that was included as one of the

five pre-planned paths and was triggered by the Multi-Trajectory Auto GCAS.
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Figure 50. Multi-Trajectory Auto GCAS with Optimal Path (Run 32), Low-Speed
Heavy, Case 1 Low, γ0 = 0◦

It is interesting to note that the modified Multi-Trajectory Auto GCAS did not

trigger the optimal path at Run 34 (ttriggerOptimal
= 16.5 sec) like the Optimal Auto

GCAS algorithm did. This can be explained by two reasons. First, in the Optimal

Auto GCAS algorithm, there is a unique optimal path calculated for each run. Hence,

the optimal path at Run 34 is not the same as the unique optimal path that was

calculated for any other run. The unique combination of bank and pull for Run 34

was optimized for the specific initial conditions, dynamic and path constraints, and

the aircraft’s relationship to the changing terrain, whereas on a pervious run this

unique bank and pull combination may hit terrain. Second, although each algorithm

uses 91 time points in the propagated optimal trajectory, these time points are spaced

differently. This means that the collision logic for the Multi-Trajectory Auto GCAS is

evaluated at different time points than where the path constraint evaluation (terrain

buffer) is performed for the Optimal Auto GCAS. The 91 time points are equispaced

for the Multi-Trajectory algorithm (for use in a fixed-step ODE solver) while they are

non-equispaced for the Optimal Auto GCAS algorithm. Note that 91 time points (the
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initial conditions plus 90 collocation points) are purposefully non-equispaced in order

to reduce error that can be seen in polynomial interpolation. This node placement

is fundamental to direct orthogonal collocation (pseudospectral methods) [52]. Had

the 91 time points been identical between both the modified Multi-Trajectory and

the Optimal Auto GCAS algorithms, it would increase the probability of the two

algorithms triggering the optimal path at the same time. Nonetheless, this research

demonstrated that the inclusion of the Optimal Auto GCAS path in the modified

Multi-Trajectory Auto GCAS algorithm did result in triggering the Optimal Auto

GCAS path which produced a later trigger time.

5.9 Summary

This chapter further defined the optimal control method for Auto GCAS by ex-

plaining the terrain classification, aircraft performance, time horizons, the five-state

and two-control aircraft model, as well as the specific Min Control cost functional and

aggressive trigger criteria used for this 3-D case. Finally, this chapter presented the

3-D results which included four scenarios and a limited sensitivity analysis of control

weighting for a medium-speed heavy aircraft as well as a comparison between the

Optimal Auto GCAS and the Multi-Trajectory Auto GCAS for a low-speed heavy

aircraft. Next, Chapter VI explores the importance of the results by presenting the

conclusions and contributions of this research followed by the recommendations for

future work.
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VI. Conclusions

As was initially discussed, there is a desire to extend the benefits of Auto GCAS

beyond fighters to military heavy aircraft. A thorough review of the literature was

conducted showing that there are currently no automated ground collision avoidance

systems that fulfill this need. Therefore, the objectives of this research were to:

1. Optimal Recovery Trajectory for Aircraft with Lower Climb Performance

Develop and evaluate an optimal control technique to calculate an Auto GCAS
recovery trajectory (to include lateral avoidance maneuvers) for aircraft with
lower climb performance. Candidate aircraft considered are low, medium, and
high-speed military heavy aircraft.

2. Comparison of Optimal Auto GCAS to a Pre-Planned Trajectory Algorithm

Conduct a limited comparison of the Optimal Auto GCAS algorithm and an
algorithm with pre-planned trajectories. For this objective, the Optimal Auto
GCAS will be compared to the Multi-Trajectory Auto GCAS algorithm with
five pre-planned automatic recovery maneuvers [91].

The first objective was answered by developing appropriate cost functionals and

constraints, and comparing different methods to determine which is most suitable for

an Auto GCAS for a heavy aircraft. As part of this, two optimal control methods

were formulated and applied first to a 2-D single control and single obstacle scenario.

The Min Control with an Aggressive Trigger method and the Max Distance with a

Timely Trigger method were demonstrated to be equivalent at the trigger point of

the automatic recovery. For the 3-D case, a method for approximating the discrete

SRTM DTED posts by using a continuous and differentiable surface approximation

was presented and implemented to model the terrain surface as a constraint in the

optimal control formulation. Using that surface approximation method, a terrain

buffer with a Left-Center-Right Look-Down approach was successfully implemented
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as the path constraint to always keep the aircraft trajectory above the terrain. In

short, it was shown that the best way to achieve an optimal recovery trajectory for

aircraft with lower climb performance is to associate the aggressive requirement with

a Min Control cost functional and the timely requirement with the threshold distance

constraint.

Using the Min Control with an Aggressive Trigger method, different simulations

for heavy aircraft were successfully demonstrated in simulation to show the flexibility

of the Optimal Auto GCAS algorithm in different scenarios. A limited comparison

of the effects of weighting the control terms in the cost functional showed that an

equal weighting produced a later trigger and the shortest activation time (time the

auto recovery is commanded) which are desirable characteristics of an Auto GCAS

recovery (although weightings will be mission and scenario dependent). To answer

the second research objective, the Optimal Auto GCAS algorithm was compared to

the Multi-Trajectory Auto GCAS algorithm in a representative low-level scenario,

demonstrating that the Optimal Auto GCAS algorithm can be a useful comparative

tool for evaluating other Auto GCAS algorithms. An Aggressiveness Metric and a

Timeliness Metric were developed to quantify the improvement of using the Optimal

Auto GCAS compared to a the Multi-Trajectory algorithm. The results showed that

the proposed Optimal Auto GCAS required less control and triggered later than the

Multi-Trajectory Auto GCAS, which leads to a system that satisfies the aggressive

and timely operational requirements. These metrics can be used to evaluate the

performance and to influence the design of any Auto GCAS system for any type of

aircraft.
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6.1 Contributions

This research effort provided three specific contributions to the area of applying

optimal control to Auto GCAS:

1. Developed a mapping of the aggressive and timely requirements into two different

optimal control formulations for Auto GCAS. For the 2-D case, demonstrated that

Max Distance with a Timely Trigger formulation is equivalent to Min Control with

an Aggressive Trigger at the trigger point.

2. For the 3-D case, created a viable optimal control formulation (Min Control with an

Aggressive Trigger) for Auto GCAS that is adaptable to multiple platforms. Although

not currently ready for real-time implementation, this research demonstrated run

times (NLP solver times) ranging from 0.15 to 1.1 sec which show the feasibility of

real-time optimal control for Auto GCAS in the near future.

3. Developed a method of comparison (or comparative tool) between the Optimal

Auto GCAS solution and any other Auto GCAS algorithm. Demonstrated the method

against Trombetta’s Multi-Trajectory Auto GCAS solution for a low-speed heavy [91].

6.2 Recommendations for Future Work

Although the Min Control with an Aggressive Trigger optimal control formulation

was shown to be a viable method for Auto GCAS, there are several areas of research

that could improve this method. Each of these areas are detailed in the paragraphs

below.

In order to improve the evaluation of the terrain constraint:

R1. Examine the suitability of other interpolation methods such as Multiquadric

and Multilog Radial Basis Functions (RBFs) when operating in mountainous terrain.

A starting point would be Aguilar et al.’s research who showed that spline methods

tend to overestimate in mountainous terrain [2].
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R2. Develop a faster terrain scanning algorithm to parse the entire DTED down to a

small local terrain set that is of significance. As was shown throughout the research,

time was spent in the evaluation of the constraint function. The method chosen

in this research was gridded data interpolation via the ‘griddedInterpolant’ MatLab

function which performed well, but this was not based on an exhaustive search [59].

Therefore, there may be other methods that would outperform.

R3. Further development of the path constraints by improving the Left-Center-Right

Look-Down constraints.

R4. Research other types of digital elevation models (to include SRTM DTED Level

2) in order to improve both accuracy and computational speed. Future DEMs may

include LIDAR data. While this will improve accuracy, this will challenge the com-

putational efficiency. The impacts of using these more accurate DEMs need to be

explored for their efficacy.

R5. To ensure that this algorithm will operate as desired in a variety of terrain,

we should examine running the Min Control with an Aggressive Trigger algorithm

against more varied terrain (Lowland, Midland, and Upland) using varied approach

angles to the terrain.

In order to further develop the method of triggering the auto recovery:

R6. Develop a two-phase formulation for the 3-D formulation for Min Control with

an Aggressive Trigger. In a single phase formulation there is an abrupt transition

from max to min control at the CPA. If the discretization is fine (high number of

collocation points) and the optimal trajectory update rate is sufficiently fast, the

transition is a jump condition at the CPA when the aggressive trigger criteria is met.

If the discretization is coarse (low number of collocation points), it is possible to step

over the exact jump condition and have an optimal solution that transitions to min

control prior to the CPA. Also if the update rate is too slow, it is possible to step
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over the exact jump condition and have an optimal solution that doesn’t meet the

aggressive trigger criteria on one time step and then an infeasible solution on the next

time step. As shown in Chapter III for the 2-D case, a two-phase formulation is useful

to determine the exact trigger point where the aggressive criteria is met for at least

one control to be at a max ∀ t ∈ [t0, tCPA). In this way, a two-phase problem formula-

tion for the 3-D and two control model would enable determination of the theoretical

optimal trajectory based on the aggressive trigger criteria. The two-phase approach

would be an appropriate method for determining the theoretical optimal trajectory

in simulation or post-facto but may not be appropriate for real-time implementation.

R7. Investigate the proper optimal trajectory update rate (time step between each

optimal path calculation) which will depend on the speed of the aircraft, aircraft

performance, the time horizon, NLP solver time, etc. The time step must be greater

than the NLP solver time, however, too large a time step will degrade the safety

performance of the Auto GCAS algorithm.

Regarding the aircraft model, further research can be done to:

R8. Determine if the 3-DOF model is sufficient to model the candidate aircraft or

if a higher-order model is necessary, keeping in mind the trade-off between accuracy

and computational speed. Based on the literature, a 3-DOF model was considered

adequate due to the short time horizons of the predicted trajectories. Recommen-

dation is to implement this algorithm in a six-degrees of freedom (6-DOF) aircraft

simulator and compare performance between the two models.

R9. Investigate using roll rate as a control (with appropriate bank angle and roll rate

limits).

R10. Determine the effect of wind on algorithm performance. It was assumed for

this research that due to the military aircraft weight and speed that wind did not
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need to be incorporated. This may not be true for other applications such as general

aviation aircraft and Remotely Piloted Aircraft (RPA).

R11. Evaluate the benefit of including auto-throttle as a control. Military aircraft

like the B-1, C-17, and F-35 do have auto-throttle, and therefore using auto-throttle

as a control input may be appropriate for future implementations of Auto GCAS.

6.3 Future of Automatic Collision Avoidance

In recent years, much progress has been made in the arena of automatic collision

avoidance technology. AFRL and Lockheed Martin have fielded the F-16 Auto GCAS,

developed an Analog F-16 Auto GCAS, developed an F-16 Automatic Air Collision

Avoidance System (Auto ACAS), and are currently integrating Auto GCAS and

Auto ACAS together as a system called Automatic Integrated Collision Avoidance

System (Auto ICAS). AFRL’s Auto ACAS flight testing was successfully completed

in September 2014 [18]. The areas of improvement identified during flight test will be

incorporated and integrated with Auto GCAS into Auto ICAS [18, 66]. The USAF

TPS is scheduled to perform risk reduction flight testing for Auto ICAS in the fall of

2015 which will be followed by a larger scale Auto ICAS flight test program in 2016

and 2017 [18, 66]. The Swedish Air Force plans to field Auto GCAS on its Gripen

fighters in 2015. The Line-in-the-Sky variant of Auto GCAS has been flight tested

on the F-22 and is planned to be fielded in 2015, and Auto GCAS is planned to be

fielded on the F-35 no later than 2024. NASA developed and flight tested a Small

UAV Auto GCAS, proved the DTED map and the Auto GCAS algorithm could be

stored on an on-board smart phone, and is currently developing a manual GCAS for

general aviation aircraft as an app on a smart phone or tablet [83, 84]. The technology

now being developed for Auto ACAS in fighters could be extended to heavy aircraft

and UAVs/RPAs in the future when needed [18]. This research has shown that the
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technology exists to integrate Auto GCAS on heavy aircraft. However, a vetted

requirement and funding for research and flight test to fully develop the system on

candidate aircraft are required.

This Optimal Auto GCAS research is a step forward in the DoD’s quest for con-

tinual improvements in flight safety. This research has demonstrated that an optimal

control approach can be applied to Auto GCAS and has applications to military heavy

aircraft. The Min Control with an Aggressive Trigger technique developed in this re-

search will be used as an evaluation tool for a limited Multi-Trajectory Auto GCAS

flight test on the variable stability Learjet at USAF TPS in the fall of 2015 [91]. Re-

sults from the TPS flight tests will provide more insight into the efficacy of an Auto

GCAS for heavy aircraft and propel the DoD one step further on the path towards

reducing CFIT and other Auto GCAS-preventable mishaps in heavy aircraft.
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Appendix A. Building the DTED Matrices in MatLab

A.1 Building the DTED map in Lat, Lon, Altitude (LLA) Format

The DTED matrices are constructed in latitude, longitude, and altitude (LLA)

format. The Z matrix terrain heights from the DTED source data are provided in

meters, and the XLonMatrix and Y LatMatrix built in this section are in arclengths

(degrees).

1. Inputs to ‘dted’ function

- South/North Latitude Limits

- West/East Longitude Limits

- Specify type of DTED file - Level 0, 1, or 2

2. Outputs from ‘dted’ function

- Z matrix of terrain heights

- Reference vector

- Latitude and Longitude to define Southwest corner of DTED grid

3. Build X Matrix (Longitude)

- extract cells/degree from reference vector

- degrees/cell = 1/(cells/degree)

- create row vector of longitude posts from West to East

– Xvector = lonlimitWest : degrees/cell : lonlimitEast

- create XLonMatrix by replicating rows to form a square matrix

4. Build Y Matrix (Latitude)

- create row vector of latitude posts from South to North

– Y vector = latlimitSouth : degrees/cell : latlimitNorth

- create YLatMatrix by replicating rows to form a square matrix

– transpose YLatMatrix so that it is now a series of columns

5. Plot 3D DTED in LLA Format (surface or mesh plot for example)
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- surf(XLonMatrix, Y LatMatrix, Z)

A.2 Reference Frames

A.2.1 Mapping of DTED from LLA to gridded ENU Format.

The function ‘lla2griddedenu’ was created to perform the calculations for the

mapping from LLA to gridded ENU, using the following affine transformation.

XgriddedENU = (XLon − Lon0) ∗
(

meters

deg of longitude

)
(119)

YgriddedENU = (YLat − Lat0) ∗
(

meters

deg of latitude

)
(120)

where Lat0 = and Lon0 = are defined as the South and West corner reference points

of the DTED grid.

A.2.2 Reverse Mapping from gridded ENU to LLA Format.

The optimal path calculated by the NLP solver is in the gridded ENU format.

In order to have the optimal path data in LLA format (especially useful for flight

test), a reverse mapping is performed from gridded ENU to LLA. The function ‘grid-

dedenu2lla’ was created to perform the calculations for the reverse mapping back to

LLA format, using the following affine transformation:

XLon = XgriddedENU ∗
(
deg of longitude

meter

)
+ Lon0 (121)

YLat = YgriddedENU ∗
(
deg of latitude

meter

)
+ Lat0 (122)
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Appendix B. Interpolation Methodology

B.1 Interpolation Methodology

The continuous surface approximation of the DTED is created outside the NLP

solver using the MatLab ‘griddedInterpolant’ function [59] as shown in Equation (123).

F = griddedInterpolant(XDTED, YDTED, ZDTED, ’spline’) (123)

Then inside the NLP solver, the ‘griddedInterpolant’ function F is simply queried in

the z dimension using the optimal path x∗ and y∗. The clearance above the terrain is

then calculated by subtracting the interpolated height of the terrain from the altitude

of the aircraft from the optimal path z∗ as shown in Equation (124).

Zinterpcenter = F (x∗, y∗) (124a)

Clearancecenter = z∗ − Zinterpcenter (124b)

350 ft ≤ Clearancecenter ≤ Service Ceiling (124c)

Then the ‘griddedInterpolant’ function F representing the surface approximation is

queried for the left and right constraint paths as well as at x∗, y∗, and and then the

181



clearance for the left and right paths are calculated as shown in Equation (125).

Zinterpleft = F (xleft, yleft) (125a)

Clearanceleft = z∗ − Zinterpleft (125b)

0 ft ≤ Clearanceleft ≤ Service Ceiling (125c)

Zinterpright = F (xright, yright) (125d)

Clearanceright = z∗ − Zinterpright (125e)

0 ft ≤ Clearanceright ≤ Service Ceiling (125f)
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Appendix C. Path Propagation Criteria Methodology

C.1 Methodology to use the Path Propagation Criteria

When an Auto GCAS is to be integrated into a candidate aircraft, then Trom-

betta’s path propagation criteria (PPC) will need to be applied for the specific mis-

sion airspeed, specific terrain type, g for the Auto GCAS recovery, bank angle for the

Auto GCAS recovery, and max flight path angle for that aircraft. The methodology

to apply Trombetta’s criteria is

1. Set mission airspeed and max flight path angle in simulation

2. Forward Avoidance Path:
a. Setup simulation for wings-level pull (at g for the Auto GCAS pull-up recovery)
b. Upland: Run simulation until 4,000 ft of climb is achieved. Record Distance
Covered dclimb (for 4,000 ft climb). Record tfwd path.
c. Midland: Using dclimb, apply 500 ft per 1

2
NM to calculate the required Mini-

mum Altitude Climbed. Run simulation until Min Altitude Climbed is achieved.
Record tfwd path.
d. Lowland: Using dclimb, apply 250 ft per 1

2
NM to calculate the required Mini-

mum Altitude Climbed. Run Simulation until Min Altitude Climbed is achieved.
Record tfwd path.

3. Lateral Avoidance Paths:
a. Setup simulation for level turn (at g and bank angle for Auto GCAS lateral
recovery)
b. Upland/Midland/Lowland: Run simulation until 90◦ of turn is achieved.
Record t90◦ .

4. Compare t90◦ & tfwd path for the Lowland, Midland, and Upland cases.
Path Propagation Time = max(t90◦ , tfwd path)
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Appendix D. Settings for the GPOPS-II Software

D.1 GPOPS-II Settings

The GPOPS-II settings used for both the Max Distance with a Timely Trigger and

Min Control with an Aggressive Trigger algorithms are listed in Table 26. GPOPS-II

version 2.0 (May 2014) is used in this research. IPOPT was used as the nonlinear

programming (NLP) solver for all of the scenarios in this research.

Table 26. GPOPS-II settings for Max Distance and Min Control Algorithms

GPOPS-II option Setting

setup.nlp.solver IPOPT (v3.11.0)
setup.nlp.options.ipopt.linear solver ma57

setup.nlp.options.tolerance 1e-5
setup.nlp.options.maxiterations 4000

setup.derivatives.supplier sparseCD (sparse Center Difference)
setup.derivatives.derivativelevel second
setup.derivatives.dependencies sparseNaN (sparse Not a Number)

setup.method RPM-Integration
setup.mesh.method hp-LiuRao

setup.mesh.tolerance 1e-1
setup.mesh.maxiterations 10

min num of collocation points per interval 3
max num of collocation points per interval 10

setup.scales.method (scaling) none (done manually)

D.2 State and Control Limits

Table 27 displays the state and control limits used in both the Max Distance

and Min Control algorithms. These are the standard state and control limit settings

used for the majority of the scenarios analyzed in this research. The limits for the

state γ and the control Nz were changed when necessary due to varying performance

characteristics of the low, med, and high-speed heavy aircraft. These exceptions are

listed in the applicable sections below.
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Table 27. State and Control Limits

Minimum Maximum Units

States x-location DTED Limits NM

y-location DTED Limits NM

z-location 0 Service Ceiling feet

flight path angle γ -15 15 degrees

heading angle χ -180 180 degrees

Controls load factor Nz 0 2 g

bank angle µ -60 60 degrees

D.3 Low and Medium-Speed Heavy Specific Settings

Table 28. Settings Unique to the Low and Medium-Speed Heavy Aircraft

Variable Setting Units

Velocity (low-speed) 210 NM/hour

Time horizon (low-speed) 45 seconds

Velocity (medium-speed) 310 NM/hour

Time horizon (medium-speed) 31 seconds
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D.4 Low-Speed Heavy Settings for Comparison with Multi-Trajectory

Auto GCAS

Table 29. Settings for Low-Speed Heavy Comparison with Multi-Trajectory Auto
GCAS

Variable Setting Units

Velocity 210 NM/hour

Time horizon 45 seconds

Min flight path angle γ -15.8 degrees

Max flight path angle γ 15.8 degrees

x
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